Dexamethasone induces developmental axon damage in the offspring hippocampus by activating miR-210-3p/miR-362-5p to target the aberrant expression of Sonic Hedgehog.

Biochem Pharmacol

Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China. Electronic address:

Published: August 2024

Given the extensive application of dexamethasone in both clinical settings and the livestock industry, human exposure to this drug can occur through various sources and pathways. Prior research has indicated that prenatal exposure to dexamethasone (PDE) heightens the risk of cognitive and emotional disorders in offspring. Axonal development impairment is a frequent pathological underpinning for neuronal dysfunction in these disorders, yet it remains unclear if it plays a role in the neural damage induced by PDE in the offspring. Through RNA-seq and bioinformatics analysis, we found that various signaling pathways related to nervous system development, including axonal development, were altered in the hippocampus of PDE offspring. Among them, the Sonic Hedgehog (SHH) signaling pathway was the most significantly altered and crucial for axonal development. By using miRNA-seq and targeting miRNAs and glucocorticoid receptor (GR) expression, we identified miR-210-3p and miR-362-5p, which can target and suppress SHH expression. Their abnormal high expression was associated with GR activation in PDE fetal rats. Further testing of PDE offspring rats and infant peripheral blood samples exposed to dexamethasone in utero showed that SHH expression was significantly decreased in peripheral blood mononuclear cells (PBMCs) and was positively correlated with SHH expression in the hippocampus and the expression of the axonal development marker growth-associated protein-43. In summary, PDE-induced hippocampal GR-miR-210-3p/miR-362-5p-SHH signaling axis changes lead to axonal developmental damage. SHH expression in PBMCs may reflect axonal developmental damage in PDE offspring and could serve as a warning marker for fetal axonal developmental damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116330DOI Listing

Publication Analysis

Top Keywords

axonal development
16
pde offspring
16
shh expression
16
axonal developmental
12
developmental damage
12
expression
8
sonic hedgehog
8
peripheral blood
8
axonal
7
offspring
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!