Manganese-based cathodes are competitive candidates for state-of-the-art aqueous zinc-ion batteries (AZIBs) because of their easy preparation method, sufficient nature reserve, and environmental friendliness. However, their poor cycle stability and low rate performance have prevented them from practical applications. In this study, MnO nanoparticles were formed in situ on the surface and between the interlayers of TiCT MXene, which was pretreated by the intercalation of K ions. TiCT MXene not only provides abundant active sites and high conductivity but also hinders the structural damage of MnO during charging and discharging. Benefiting from the well-designed K-TiC@MnO structure, the battery equipped with the K-TiC@MnO cathode achieved a maximum specific capacity of 312 mAh/g at a current density of 0.3 A/g and carried a specific capacity of approximately 120 mAh/g at a current density of 1 A/g, which remained stable for approximately 500 cycles. The performance surpasses that of most reported MnO-based cathodes. This study pioneers a new approach for building better cathode materials for AZIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.05.151DOI Listing

Publication Analysis

Top Keywords

tict mxene
12
mno nanoparticles
8
specific capacity
8
mah/g current
8
current density
8
density a/g
8
situ growth
4
growth mno
4
nanoparticles accordion-like
4
accordion-like tict
4

Similar Publications

Promising TiCT MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity.

ACS Appl Mater Interfaces

July 2019

Key Laboratory of Advanced Materials Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology , Zhengzhou University, Zhengzhou 450002 , China.

Electromagnetic (EM) pollution affecting people's normal lives and health has attracted considerable attention in the current society. In this work, a promising EM wave absorption and shielding material, MXene/Ni hybrid, composed of one-dimensional Ni nanochains and two-dimensional TiCT nanosheets (MXene), is successfully designed and developed. As expected, excellent EM wave absorption and shielding properties are obtained and controlled by only adjusting the MXene content in the hybrid.

View Article and Find Full Text PDF

Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment.

ACS Sens

May 2019

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University, 2699 Qianjin Street , Changchun 130012 , People's Republic of China.

Article Synopsis
  • TiCT MXene, an organ-like structure, was synthesized from TiAlC using hydrofluoric acid etching, followed by treatment with sodium hydroxide to enhance its properties.
  • Room-temperature gas and humidity sensors were created using TiCT and alkalized TiCT through a dip coating method, making use of the improved material.
  • The alkalized TiCT sensor showed significant enhancements in humidity sensing (60 times response change) and notable performance in detecting ammonia, suggesting its potential for use in chemical sensors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!