A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulations predict intermediate-mass black hole formation in globular clusters. | LitMetric

The formation process of intermediate-mass black holes (IMBHs), defined as those between 100 and 10 solar masses (), is debated. One potential origin is the growth of less-massive black holes merging with stars and compact objects within globular clusters (GCs). However, previous simulations have indicated that this process only produces IMBHs under 500 before gravitational wave recoil ejects them from the GC. We performed star-by-star simulations of GC formation, finding that high-density star formation in a GC's parent giant molecular cloud can produce sufficient mergers of massive stars to overcome that mass threshold. We conclude that GCs can form with IMBHs more than 10 , which is sufficiently massive to be retained within the GC even with the expected gravitational wave recoil.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adi4211DOI Listing

Publication Analysis

Top Keywords

intermediate-mass black
8
globular clusters
8
black holes
8
gravitational wave
8
wave recoil
8
simulations predict
4
predict intermediate-mass
4
black hole
4
formation
4
hole formation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!