The prognosis of fracture is directly related to several factors. Due to the limitations of existing treatment strategies, there are still many fractures with poor healing. Bone marrow mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts and chondrocytes. Therefore, BMSC transplantation is promised as an effective method for treating bone fractures. We aim to explore whether silently expressing sclerostin gene (SOST) can promote bone formation through the SOST/Wnt/β-catenin signal pathway. We isolated rat BMSCs and the target gene (SOST shRNA) was transduced into them for osteogenic induction. The results showed that SOST significantly inhibited the proliferation and osteogenic differentiation of BMSCs during osteogenic induction, whereas silently expressing SOST not only increased the number of surviving BMSCs but also promoted the expression of osteogenesis-related proteins RUNX2, osteoprotegerin, Collagen I (COL-I), and bone morphogenetic protein-2 during osteogenic induction. The results of imaging examination in rats show that downregulating the expression of SOST can promote the formation of bony callus and the transformation of cartilage tissue into normal bone tissue, and then accelerate the healing of osteoporotic fracture. In addition, we also found that SOST silencing can activate the Wnt/β-catenin pathway to achieve these effects. In conclusion, SOST silencing can promote the proliferation and osteogenic differentiation of BMSCs in situ, and therefore may enhance the therapeutic efficiency of BMSC transplantation in OPF.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2024.0061DOI Listing

Publication Analysis

Top Keywords

osteogenic induction
12
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8
signal pathway
8
bmsc transplantation
8
silently expressing
8
gene sost
8
sost promote
8

Similar Publications

This study investigates the mechanism of PHF20 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). BMSCs from Balb/c mouse were cultured and identified through osteogenesis, adipogenesis, and flow cytometry. After osteogenic induction, the levels of OPN and OCN in BMSCs were detected by RT-qPCR.

View Article and Find Full Text PDF

Hydrogel-integrated exosome mimetics derived from osteogenically induced mesenchymal stem cells in spheroid culture enhance bone regeneration.

Biomaterials

January 2025

Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. Electronic address:

Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!