Pain hypersensitivity is dependent on autophagy protein Beclin 1 in males but not females.

Cell Rep

Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Published: June 2024

Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114293DOI Listing

Publication Analysis

Top Keywords

mechanical hypersensitivity
16
dorsal horn
12
males females
8
inflammation-induced mechanical
8
loss becn1
8
inflammatory neuropathic
8
neuropathic pain
8
pain signaling
8
signaling pathways
8
horn neurons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!