The convolution operator at the core of many modern neural architectures can effectively be seen as performing a dot product between an input matrix and a filter. While this is readily applicable to data such as images, which can be represented as regular grids in the Euclidean space, extending the convolution operator to work on graphs proves more challenging, due to their irregular structure. In this article, we propose to use graph kernels, i.e., kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain. This allows us to define an entirely structural model that does not require computing the embedding of the input graph. Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability in terms of the structural masks that are learned during the training process, similar to what happens for convolutional masks in traditional convolutional neural networks (CNNs). We perform an extensive ablation study to investigate the model hyperparameters' impact and show that our model achieves competitive performance on standard graph classification and regression datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3400850 | DOI Listing |
JACC Adv
January 2025
Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA.
Background: Immune checkpoint inhibitor (ICI) therapy has dramatically improved the prognosis for some cancers but can be associated with myocarditis, adverse cardiovascular events, and mortality.
Objectives: The aim of this study was to develop an artificial intelligence (AI) model to predict the increased likelihood for the development of ICI-related myocarditis and adverse cardiovascular events.
Methods: Cancer patients treated with ICI at a tertiary institution from 2011 to 2022 were reviewed.
Bioinform Adv
November 2024
School of Information Engineering, Huzhou University, Huzhou, Zhejiang 313000, China.
Motivation: Much evidence suggests that the subcellular localization of long-stranded noncoding RNAs (LncRNAs) provides key insights for the study of their biological function.
Results: This study proposes a novel deep learning framework, LncLSTA, designed for predicting the subcellular localization of LncRNAs. It firstly exploits LncRNA sequence, electron-ion interaction pseudopotentials, and nucleotide chemical property as feature inputs.
Curr Med Imaging
January 2025
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Background: Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.
Objective: The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.
Brief Bioinform
November 2024
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.
Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.
View Article and Find Full Text PDFJMIR Cardio
December 2024
School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
Background: Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods face challenges due to invasiveness, cost, and inaccessibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!