Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval. Therefore, we implemented a risk-based pharmaceutical quality by design (QbD) approach for SPION production using flame spray pyrolysis (FSP), a scalable technique with excellent batch-to-batch consistency. A design of experiments method enabled precise size control during manufacturing. Subsequent modeling linked the SPION size (6-30 nm) and composition to intrinsic loss power (ILP), a measure of hyperthermia performance. FSP successfully fine-tuned the SPION composition with dopants (Zn, Mn, Mg), at various concentrations. Hyperthermia performance showed a strong nonlinear relationship with SPION size and composition. Moreover, the ILP demonstrated a stronger correlation to coercivity and remanence than to the saturation magnetization of SPIONs. The optimal operating space identified the midsized (15-18 nm) MnFeO as the most promising nanoparticle for hyperthermia. The production of these nanoparticles on a pilot scale showed the feasibility of large-scale manufacturing, and cytotoxicity investigations in multiple cell lines confirmed their biocompatibility. o hyperthermia studies with Caco-2 cells revealed that MnFeO nanoparticles induced 80% greater cell death than undoped SPIONs. The systematic QbD approach developed here incorporates process robustness, scalability, and predictability, thus, supporting the clinical translation of high-performance SPIONs for magnetic hyperthermia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171760PMC
http://dx.doi.org/10.1021/acsnano.4c04685DOI Listing

Publication Analysis

Top Keywords

magnetic hyperthermia
12
pharmaceutical quality
8
quality design
8
hyperthermia
8
clinical translation
8
qbd approach
8
spion size
8
hyperthermia performance
8
spions
5
design approach
4

Similar Publications

Background: The benefit of cytoreduction with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) for epithelial ovarian cancer (EOC) remains uncertain. This study investigated the relationship between serum cytokines, particularly monocyte chemoattractant protein-1 (MCP-1), a key inflammatory mediator, and recurrence risk in EOC patients undergoing CRS/HIPEC.

Methods: From January 2018 to January 2023, serum cytokine levels were analyzed in 34 EOC patients (17 primary, 17 recurrent) before and after CRS/HIPEC using MILLIPLEX Magnetic Bead Panels.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement.

View Article and Find Full Text PDF

Background/objectives: The unique properties of iron oxide nanoparticles have attracted significant interest within the biomedical community, particularly for magnetic hyperthermia applications. Various synthesis methods have been developed to optimize these nanoparticles.

Methods: In this study, we employed a powdered coconut water (PCW)-assisted sol-gel method to produce magnetite nanoparticles for the first time.

View Article and Find Full Text PDF

Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.

View Article and Find Full Text PDF

Magnetic and Biomedical Properties of Iron Nanoparticles Synthesized Using Extract.

Materials (Basel)

December 2024

Biomedical Engineering Department, Faculty of Engineering and Architecture, Istanbul Yeni Yüzyıl University, Istanbul 34010, Türkiye.

Magnetic nanoparticles have attracted significant attention in nanoscience and nanotechnology due to their unique physicochemical properties. These properties enable their great potential in various biomedical applications, such as hyperthermia, drug delivery, tissue engineering, theranostics, and lab-on-a-chip technologies. Physical and chemical methods are conventionally used for the synthesis of nanoparticles; however, due to several limitations of these methods, research focus has recently shifted towards developing clean and eco-friendly synthesis protocols while maintaining their desirable chemical and physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!