Acer oblongum is native to Southwest China and is also distributed in Nepal and Northern India. It is an excellent garden ornamental tree species, suitable for solitary planting in courtyards and parks. From June to August 2022, severe leaf blight occurred on A. oblongum in Baihe Wetland Park (32°5'42" N, 112°28'13" E) in Nanyang City, China. The foliar disease rate reached 59% (n=100). Early signs were yellow spots on the leaves, mainly on the middle and edge parts. Then, the lesions gradually expanded, became amorphous, and turned yellowish brown, eventually led to necrosis on leaves and branches. Twenty diseased leaves were collected and the junction areas between infected and healthy tissues were cut into 5 x 5 mm2 pieces. The collected plant materials were sterilized in 75% ethanol and 1% NaClO for 30 s and 1 minute, respectively, followed by rinsing in sterile water, and placing on a potato dextrose agar (PDA) plate supplemented with 50 µg ml-1 streptomycin at 25 °C for 3 days. Colony edges were cut and transferred to new PDA plates for purification culture. A total of 18 purified fungal strains were obtained, which showed similar phenotypes in morphological characteristics. All colonies had spread radially with wavy surfaces, and dense cream to white aerial hyphae. After 14 days in culture, black fruiting bodies appeared. Conidia were fusiform to slightly clavate, with five cells and two or three setae, 4.2 to 7.9 μm × 17.5 to 25.4 μm in diameter (n = 100). The apical and basal cells and setae were colorless, three median cells were brown, and the middle cell was dark brown. Morphological characteristics of all 18 strains were consistent with the genus description of Neopestalotiopsis spp. (Maharachchikumbura et al. 2014). Further molecular identification showed that the ITS region sequences of all strains have extremely high homology with Neopestalotiopsis spp. The β-tubulin gene (TUB), and the translation elongation factor 1-alpha gene (TEF1) were amplified for molecular identification (Shu et al. 2020). The sequences of three representative strains (FE-05, 09, 16) from different regions were deposited in GenBank with accession Nos. OQ867279, OQ867288, OQ867289 (ITS), OQ870207, OQ870208, OQ870209 (TUB), and OQ870204, OQ870205, OQ870206 (TEF1). BLASTn analysis of these sequences showed 99 to 100% identity to Neopestalotiopsis clavispora strains (OK655673, MZ648263 for ITS, ON000362, MZ286974 fr TUB, MH423941, MK512481 for TEF1). These morphological features and molecular identification indicated that the pathogen has the same characteristics as N. clavispora. Pathogenicity was tested on ten healthy 3-month-old seedlings using the three representative strains through in vivo experiments. For each strain, the conidial suspension (106 conidia ml-1) in absorbent cotton balls (50 µl of inoculum) were inoculated onto the healthy leaves of two seedlings, while a total of two other plants were served with sterile water as a blank control. The plants were potted in a climate incubator at 28°C and a relative humidity of approximately 90%. Symptoms consistent with natural lesions were observed on the inoculated leaves after 5 days while the control plants remained healthy. The strains of N. clavispora were reisolated from the symptomatic inoculated leaves, fulfilling Koch's postulates. N. clavispora is known to cause disease in a variety of plants in China, such as Dendrobium officinale (Cao et al., 2022), Fragaria ananassa (Shi et al., 2022), and Garcinia mangostana (Qiu et al., 2019). To the best of our knowledge, this is the first report of N. clavispora causing leaf blight on A. oblongum in China. The yellowing and falling off of leaves would seriously affects the garden landscape. It is necessary to further clarify the host range of the pathogen to select appropriate landscape matching plants in future planning.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-23-1313-PDNDOI Listing

Publication Analysis

Top Keywords

leaf blight
12
molecular identification
12
causing leaf
8
sterile water
8
morphological characteristics
8
neopestalotiopsis spp
8
three representative
8
representative strains
8
control plants
8
inoculated leaves
8

Similar Publications

Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review.

Ecotoxicology

January 2025

Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.

As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Control of HS synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.

View Article and Find Full Text PDF

A comprehensive dataset on lemon leaf disease can surely bring a lot of potentials into the development of agricultural research and the improvement of disease management strategies. This dataset was developed from 1354 raw images taken with professional agricultural specialist guidance from July to September 2024 in Charpolisha, Jamalpur, and further enhanced with augmented techniques, adding 9000 images. The augmentation process involves a set of techniques-flipping, rotation, zooming, shifting, adding noise, shearing, and brightening-to increase variety for different lemon leaf condition representations.

View Article and Find Full Text PDF

Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!