Detection of milk adulteration using coffee ring effect and convolutional neural network.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Published: July 2024

A low-cost and effective method is reported to identify water and synthetic milk adulteration of cow's milk using coffee ring patterns. The cow's milk samples were diluted with tap water (TW), distilled water (DW) and mineral water (MW) and drop cast onto glass slides to observe coffee ring patterns. The area of the ring, total particle area and average particle diameter were extracted from these patterns. For each ring, the ratio of total particle area versus total ring area was calculated. The area ratio, regardless of water adulterants, follows an exponential model with respect to average particle diameter. Unlike TW, the ratio for DW and MW adulterated milk are clustered and classified together with respect to the particle diameter. These results were independent of dilution level and are used for adulterant classification. The ring of milk adulterated using synthetic milk gave multiple concentric rings, flower-like structures, and oil globules throughout the dilution level. An Alexnet model was used to classify water and synthetic milk adulterants in authentic milk. The trained model could achieve 96.7% and 95.8% accuracy for binary and tertiary classification respectively. These results enable us to distinguish synthetic milk from pure milk and segregate DW and MW with respect to TW adulterated milk.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2024.2358518DOI Listing

Publication Analysis

Top Keywords

synthetic milk
16
coffee ring
12
particle diameter
12
milk
11
milk adulteration
8
water synthetic
8
cow's milk
8
ring patterns
8
total particle
8
particle area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!