The electrical conductivity of blood is a crucial physiological parameter with diverse applications in medical diagnostics. Here, a novel approach utilizing a portable millifluidic nanogenerator lab-on-a-chip device for measuring blood conductivity at low frequencies, is introduced. The proposed device employs blood as a conductive substance within its built-in triboelectric nanogenerator system. The voltage generated by this blood-based nanogenerator device is analyzed to determine the electrical conductivity of the blood sample. The self-powering functionality of the device eliminates the need for complex embedded electronics and external electrodes. Experimental results using simulated body fluid and human blood plasma demonstrate the device's efficacy in detecting variations in conductivity related to changes in electrolyte concentrations. Furthermore, artificial intelligence models are used to analyze the generated voltage patterns and to estimate the blood electrical conductivity. The models exhibit high accuracy in predicting conductivity based solely on the device-generated voltage. The 3D-printed, disposable design of the device enhances portability and usability, providing a point-of-care solution for rapid blood conductivity assessment. A comparative analysis with traditional conductivity measurement methods highlights the advantages of the proposed device in terms of simplicity, portability, and adaptability for various applications beyond blood analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202403568DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
16
blood
9
conductivity
9
millifluidic nanogenerator
8
nanogenerator lab-on-a-chip
8
lab-on-a-chip device
8
blood electrical
8
conductivity blood
8
blood conductivity
8
proposed device
8

Similar Publications

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.

Methods: The study was designed with five levels of electrical conductivity (EC): 0.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!