Plant-based food contact materials: presence of hazardous substances.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands.

Published: July 2024

As a result of the European Single Use Plastic Directive and as part of the transition to a circular economy, plastic food contact materials (FCMs) are being replaced, often by renewable plant-based materials. This research aimed to identify which chemical substances are present in plant-based materials. In 2022 a total of 28 samples of the latter materials from the Dutch market were analysed for 313 active substances from plant protection products, 47 per- and polyfluoralkyl substances (PFASs) and 27 heavy metals and other elements. Ten samples contained plant protection products that are not authorised in the EU. Most materials contained PFASs at trace or even high levels. Three out of four investigated sugar cane materials contained 6:2 fluorotelomer alcohol at levels up to 1.7 mg/kg. High contents of aluminium, manganese, iron, zinc, and barium were found. Other heavy metals, such as arsenic, lead and mercury were found in relatively low contents. A broad GC-MS screening was performed, which revealed the presence of plant extractable, plasticisers, antioxidants and hydrocarbons, which were not all authorised for FCMs, but may be present as non-intentionally added substances.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2024.2357350DOI Listing

Publication Analysis

Top Keywords

food contact
8
contact materials
8
plant-based materials
8
plant protection
8
protection products
8
heavy metals
8
materials contained
8
materials
7
substances
5
plant-based food
4

Similar Publications

Peri-urban environments, characterized by dense human populations, cohabiting livestock, and complex food systems, serve as hotspots for food contamination and infectious diseases. Children aged 6-24 months are particularly vulnerable as they often encounter contaminated food and water, increasing their risk of food-borne disease, with diarrhea being a common symptom. We investigated the prevalence of antimicrobial resistance (AMR) in pathogenic Escherichia coli from 6-24 months-old children, their food, and cohabiting livestock, in Dagoretti South subcounty in Nairobi, Kenya.

View Article and Find Full Text PDF

The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.

View Article and Find Full Text PDF

Evaluating Resonant Acoustic Mixing as a Wet Granulation Process.

Org Process Res Dev

December 2024

Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Control of powder properties is crucial for industrial processes across the food, pharmaceutical, agriculture, and mineral processing industries, and granulation is an important tool for providing agglomerated particles with controllable properties. However, existing granulation processes are not readily integrated with other processing steps and are not appropriate for some types of materials. Adding resonant acoustic-based granulation to the toolkit has the potential to widen the achievable parameter space and, importantly, integrate granulation into chemistry and blending operations that are already being performed on the RAM platform, resulting in process intensification.

View Article and Find Full Text PDF

Myrrh oleo-gum-resin (MOGR) is a natural substance that has a rich history of medicinal use due to its anti-inflammatory, antimicrobial, and antioxidant properties. The present study reports on the fabrication and assessment of pectin and K-carrageenan composite films infused with varying proportions (0.3%, 0.

View Article and Find Full Text PDF

Effect of strengthening agents on properties of dual-modified cassava starch-based degradable films.

Int J Biol Macromol

December 2024

College of Food Science and Engineering, Changchun University, Changchun 130022, China. Electronic address:

Insufficient hydrophobicity and mechanical properties pose significant challenges in the development of starch-based degradable films. This study prepared modified (crosslinked, acetylated, and crosslinked & acetylated) cassava starch films, and different concentrations of strengthening agents (polyvinyl alcohol, sodium alginate, gelatin, and hyaluronic acid) were added to produce modified starch composite films. The physical properties, structure characteristics, and degradability of these films were systematically evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!