Detecting the concentration of reactive dyes and their hydrolyzed products is essential for controlling the dyeing process and is an important guide for upgrading and improving textile dyeing technology. In this study, capillary electrophoresis (CE) with UV detection was for the first time applied in a real trichromatic dyeing process to provide qualitative and quantitative determination of reactive dyes and their hydrolyzed forms. Here, three original reactive dyes (SES-Cl-red-195, SES-Cl-yellow-145, and SES-Cl-blue-194), their vinyl sulfone forms (VS-Cl-red-195, VS-Cl-yellow-145, and VS-Cl-blue-194), and complete hydrolyzed forms (HES-OH-red-195, HES-OH-yellow-145, and HES-OH-blue-194) could be baseline separated in our developed BGE comprised of 10.0 mol/L NaBO, 15% (V/V) ACN at pH 8.50 that adjusted by 0.50 mol/L HBO. The LODs (S/N = 3) of nine analytes ranged from 0.3 to 1.3 mg/L, and high sensitivities were achieved with UV detection. The RSDs of peak area and migration time were in the ranges of 1.4-3.8% and 0.39-1.29%, which indicated the CE methods were reliable for studying different dye forms in complex dye baths, and for evaluating dyeing process quality. Thus, the percentage of dye-uptake in single and trichromatic combination dyes was calculated based on the concentration of the original and their vinyl sulfone and hydrolyzed forms, and the result was consistent with the traditional UV-Vis method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s44211-024-00600-z | DOI Listing |
Nat Commun
January 2025
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China.
Background: Para-phenylenediamine (PPD) is a crystalline solid that belongs to the aromatic amine group, widely used in the manufacturing of various dyes. PPD exhibits toxic effects on female hormone stability, ovarian function, and embryo development. Although studies have shown that PPD exposure can damage oocyte quality in female mice, research on its effects on male reproductive capability, particularly on human sperm quality and function, is limited.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.
The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!