A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer. | LitMetric

Scanning Thermal Microscopy (SThM) has become an important measurement technique for characterizing the thermal properties of materials at the nanometer scale. This technique requires a SThM probe that combines an Atomic Force Microscopy (AFM) probe and a very sensitive resistive thermometer; the thermometer being located at the apex of the probe tip allows for the mapping of temperature or thermal properties of nanostructured materials with very high spatial resolution. The high interest of the SThM technique in the field of thermal nanoscience currently suffers from a low temperature sensitivity despite its high spatial resolution. To address this challenge, we developed a high vacuum-based AFM system hosting a highly sensitive niobium nitride (NbN) SThM probe to demonstrate its unique performance. As a proof of concept, we utilized this custom-built system to carry out thermal measurements using the 3ω method. By measuring the V3ω voltage on the NbN resistive thermometer under vacuum conditions, we were able to determine the SThM probe's thermal conductance and thermal time constant. The performance of the probe is demonstrated by performing thermal measurements in-contact with a sapphire sample.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0203890DOI Listing

Publication Analysis

Top Keywords

thermal measurements
12
sthm probe
12
thermal
9
niobium nitride
8
thermal properties
8
resistive thermometer
8
high spatial
8
spatial resolution
8
sthm
6
probe
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!