Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high-resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator-prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long-term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium-sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long-term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.14448 | DOI Listing |
Sci Total Environ
January 2025
School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia; The Environment Institute, University of Adelaide, Adelaide, SA 5000, Australia; Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Human overexploitation contributed strongly to the loss of hundreds of bird species across Oceania, including nine giant, flightless birds called moa. The inevitability of anthropogenic moa extinctions in New Zealand has been fiercely debated. However, we can now rigorously evaluate their extinction drivers using spatially explicit demographic models capturing species-specific interactions between moa, natural climates and landscapes, and human colonists.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
In this study, a focus on the populations of bryophytes living in aquatic and humid habitats of Sicily is presented. This investigation aims to evaluate the consistency and diversity of this group of taxa. The complete list of taxa known to date in these habitats is provided, with reference to hornworts, liverworts, and mosses, and the patterns related to the biological, ecological, and chorological features of this bryophyte flora are also illustrated.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Faculty of Agricultural and Veterinary Sciences, Department of Animal Science, São Paulo State University, Jaboticabal Campus, São Paulo 14884-900, Brazil.
Domestic cats () currently occupy the 38th place in the Global Invasive Species Database. Free-roaming cats potentially have broad-ranging impacts on wildlife, occupying most terrestrial environments globally as house pets, strays, or feral animals. In Australia, for example, cats are responsible for the decline in many vertebrate populations and extinction of several native mammals.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Centro de Investigación de La Biodiversidad y Cambio Climático (BioCamb), y Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador.
Background: Andean orography has shaped the endemism of plant species in montane forests, creating a mosaic of habitats in small and isolated areas. Understanding these endemic species' genetic diversity patterns is crucial for their conservation. Phaedranassa cinerea (Amaryllidaceae), a species restricted to the western Andes of Ecuador, is listed as "vulnerable" according to the IUCN criteria.
View Article and Find Full Text PDFOecologia
January 2025
Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan.
Vertical seed dispersal towards higher or lower altitudes is an important process for plants' adaptation to climate change. Although many plants depend on animals for seed dispersal, studies on vertical seed dispersal by animals, determined by complex animal behaviours, are scarce. Previous studies hypothesised that animals inhabiting temperate regions disperse seeds uphill in spring/summer and downhill in autumn/winter due to their seasonal movement following the altitudinal gradients in food phenology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!