Circular RNA hsa_circ_0001322 (circ1322) was demonstrated to be significantly reduced in expression in gastric cancer patients in our previous study, and changes in its expression were significantly correlated with lymph node metastasis. However, the underlying workings of circ1322 in gastric cancer are still not fully understood. Therefore, to confirm the effect of circ1322 on gastric cancer, we examined the expression of circ1322 in gastric cancer cells and tissues. The results showed that circ1322 was lowly expressed in GC tissues and cells. Subsequently, we further performed cellular assays and animal experiments, which showed that Circ1322 upregulation inhibited GC cell proliferation, migration and invasion. while promoting GC cell apoptosis, and inhibited tumor growth in mice. The direct targeting of circ1322 to miR-1264 was confirmed by bioinformatics prediction and validation of luciferase reporter gene assay. Circ1322 can act as a miR-1264 sponge to alleviate the inhibitory effect of miR-1264 on its target gene, QKI. miR-1264 regulates the expression of QKI and the activity of the hedgehog pathway. That is, circ1322 may act as a competing endogenous RNA (ceRNA) to inhibit the hedgehog pathway by targeting the miR-1264/QKI axis, which in turn promotes GC progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14715/cmb/2024.70.5.27 | DOI Listing |
Gastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Discov Oncol
January 2025
Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFBull Math Biol
January 2025
CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.
View Article and Find Full Text PDFSci Rep
January 2025
Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea.
No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!