Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations.

J Chem Theory Comput

Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.

Published: June 2024

Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous SiN containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00190DOI Listing

Publication Analysis

Top Keywords

neural network
12
graph neural
8
network interatomic
8
interatomic potentials
8
molecular dynamics
8
high accuracy
8
parallel efficiency
8
strong-scaling performance
8
scalable parallel
4
parallel algorithm
4

Similar Publications

Active Physics-Informed Deep Learning: Surrogate Modeling for Nonplanar Wavefront Excitation of Topological Nanophotonic Devices.

Nano Lett

January 2025

Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 11-19, Kiel 24098, Germany.

Topological plasmonics combines principles of topology and plasmonics to provide new methods for controlling light, analogous to topological edge states in photonics. However, designing such topological states remains challenging due to the complexity of the high-dimensional design space. We present a novel method that uses supervised, physics-informed deep learning and surrogate modeling to design topological devices for desired wavelengths.

View Article and Find Full Text PDF

AI Methods for Antimicrobial Peptides: Progress and Challenges.

Microb Biotechnol

January 2025

Machine Biology Group, Department of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Antimicrobial peptides (AMPs) are promising candidates to combat multidrug-resistant pathogens. However, the high cost of extensive wet-lab screening has made AI methods for identifying and designing AMPs increasingly important, with machine learning (ML) techniques playing a crucial role. AI approaches have recently revolutionised this field by accelerating the discovery of new peptides with anti-infective activity, particularly in preclinical mouse models.

View Article and Find Full Text PDF

Cyclic voltammetry (CV) has been a powerful technique to provide impactful insights for electrochemical systems, including reaction mechanism, kinetics, diffusion coefficients, etc., in various fields of study, notably energy storage and energy conversion. However, the separation between the faradaic current component of CV and the nonfaradaic current contribution to extract useful information remains a major issue for researchers.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity, and up to now, there has been no literature reporting the analysis of a large sample of X-ray imaging parameters based on artificial intelligence (AI) for it. This study is based on the accurate and rapid measurement of x-ray coronal imaging parameters in AIS patients by AI, to explore the differences and correlations, and to further investigate the risk factors in different groups, so as to provide a theoretical basis for the diagnosis and surgical treatment of AIS.

Methods: Retrospective analysis of 3192 patients aged 8-18 years who had a full-length orthopantomogram of the spine and were diagnosed with AIS at the First Affiliated Hospital of Zhengzhou University from January 2019 to March 2024.

View Article and Find Full Text PDF

Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!