Although the tris(dibenzylideneacetone)diplatinum complex (Ptdba) is an important source of Pt(0) used in catalysis and materials science, its structure has not yet been fully elucidated. A thorough study of the three-dimensional structure of Ptdba and its dynamic behavior in solution was carried out using NMR spectroscopy methods at a high field (600 MHz) and molecular modeling. The complex was shown to contain three dba ligands in the , , and conformations, which are uniformly oriented around the Pt backbone. In solution, the Ptdba and Pddba complexes undergo rapid dynamic rearrangements, as evidenced by the exchange between the signals of the olefin protons of various dba ligands in the EXSY NMR spectra. According to the experimental measurements, the activation energies of the rearrangements were estimated to be 19.9 ± 0.2 and 17.9 ± 0.2 kcal/mol for the platinum and palladium complexes, respectively. Three possible mechanisms for this chemical exchange process were considered within the framework of DFT calculations. According to the calculated data, Mdba complexes undergo fluxional isomerization involving successive rotations of the dihedral angles formed by the carbonyl group and the C═C bond. Dissociation of dba ligands does not occur within these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c00803DOI Listing

Publication Analysis

Top Keywords

dba ligands
12
dynamic rearrangements
8
ptdba pddba
8
pddba complexes
8
complexes undergo
8
structure dynamic
4
ptdba
4
rearrangements ptdba
4
complexes
4
complexes solution
4

Similar Publications

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Retinoid-related orphan receptor-γ (RORγ) is a nuclear receptor that plays important roles in the development and activation of T helper type-17 (Th17) cells. In this study, we characterized the pharmacological profile of JTE-151 ((4S)-6-[(2-chloro-4-methylphenyl)amino]-4-{4-cyclopropyl-5-[cis-3-(2,2-dimethylpropyl)cyclobutyl]isoxazol-3yl}-6-oxohexanoic acid), which is a novel RORγ antagonist identified by our group. JTE-151 dissociated co-activator peptide from the human RORγ-ligand binding domain (LBD) and recruited co-repressor peptide into human RORγ-LBD, and potently inhibited the transcriptional activity of RORγ of human, mouse and rat.

View Article and Find Full Text PDF

Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.

View Article and Find Full Text PDF

Aire attenuate collagen-induced arthritis by suppressing T follicular helper cells through ICOSL.

Int Immunopharmacol

January 2025

Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China. Electronic address:

Objective: To assess the expression levels of autoimmune regulator (Aire) and inducible costimulator molecule ligand (ICOSL), as well as T follicular helper (Tfh) cell numbers in rheumatoid arthritis (RA) patients, and to explore their relationship with RA severity. We also aimed to investigate the effect of Aire on arthritis and its underlying mechanisms.

Methods: The expression levels of Aire, ICOSL, and Tfh cell numbers were measured in RA patients.

View Article and Find Full Text PDF

A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden.

Cell Chem Biol

November 2024

The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Engineered probiotics are an emerging platform for in situ delivery of therapeutics to the gut. Herein, we developed an orally administered, yeast-based therapeutic delivery system to deliver next-generation immune checkpoint inhibitor (ICI) proteins directly to gastrointestinal tumors. We engineered Saccharomyces cerevisiae var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!