A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrated signature of clinical metrics and immune-related genes as a prognostic indicator for ST-segment elevation myocardial infarction patient survival. | LitMetric

Background: The immune-inflammatory pathway plays a critical role in myocardial infarction development. However, few studies have systematically explored immune-related genes in relation to myocardial infarction prognosis using bioinformatic analysis. Our study aims to identify differentially expressed immune-related genes(DEIRGs) in ST-segment elevation myocardial infarction (STEMI) patients and investigate their association with clinical outcomes.

Materials And Methods: We conducted a systematic review of Gene Expression Omnibus datasets, selecting GSE49925, GSE60993, and GSE61144 for analysis. DEIRGs were identified using GEO2R and overlapped across the chosen datasets. Functional enrichment analysis elucidated the DEIRGs' biological functions and pathways. We established an optimal prognostic prediction model using LASSO penalized Cox proportional hazards regression. The signature's clinical utility was evaluated through survival analysis, ROC curve assessment, and decision curve analysis. Additionally, we constructed a prognostic nomogram for survival rate prediction. External validation was performed using our own plasma samples.

Results: The resulting prognostic signature integrated two dysregulated DEIRGs ( and ) and two clinical variables (serum creatinine level and Gensini score). This signature effectively stratified patients into low- and high-risk groups. Survival analysis, ROC curve analysis, and decision curve analysis demonstrated its robust predictive performance and clinical utility within the first two years post-disease onset. External validation confirmed significant outcome differences between risk groups.

Conclusions: Our study establishes a prognostic signature that combines DEIRGs and clinical variables for STEMI patients. The signature exhibits promising predictive capabilities for patient stratification and survival risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133808PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31247DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
16
curve analysis
12
immune-related genes
8
st-segment elevation
8
elevation myocardial
8
analysis
8
stemi patients
8
clinical utility
8
survival analysis
8
analysis roc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!