Background/aim: A significant cause of mortality and morbidity in the neonatal era is hypoxic-ischemic encephalopathy (HIE). This study examined the histopathological analysis and neuroprotective impact of syringin (SYR) in an experimental HIE rat model.

Material And Methods: On the 7th postnatal day, 24 Wistar albino rats were evaluated in 3 groups using the HIE model under gas anesthesia. In the experiment, Group A received 10 mg/kg SYR plus dimethyl sulfoxide (DMSO), Group B received DMSO only, and Group C served as a sham group. Immunohistochemical techniques were used to assess apoptotic cell measurement and proinflammatory cytokines (TNF-α and IL-1β primary antibodies).

Results: Rats suffering from hypoxic-ischemic brain damage had their apoptosis assessed. The SYR and sham groups had statistically fewer cells undergoing apoptosis (p < 0.001). There was no difference between the groups in terms of IL-1β and TNF-α during immunohistochemical staining. Neuronal degeneration was significantly lower in the histological evaluation of the hippocampus in the SYR group (p = 0.01). A statistically significant difference (p = 0.01) was observed between the SYR and the control groups regarding pericellular and perivascular edema.

Conclusion: SYR reduced apoptosis, perivascular and pericellular edema, and neuronal degeneration in rat cerebral tissue. These results raise the possibility that SYR may have a neuroprotective effect on the harm brought on by HIE. This is the first investigation of SYR's function within the HIE paradigm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763795PMC
http://dx.doi.org/10.55730/1300-0144.5697DOI Listing

Publication Analysis

Top Keywords

hypoxic-ischemic brain
8
group received
8
dmso group
8
neuronal degeneration
8
syr
7
hie
5
group
5
evaluation syringin's
4
syringin's neuroprotective
4
neuroprotective model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!