Protein crystallization as opposed to well-established chromatography processes has the benefits to reduce production costs while reaching a comparable high purity. However, monitoring crystallization processes remains a challenge as the produced crystals may interfere with analytical measurements. Especially for capturing proteins from complex feedstock containing various impurities, establishing reliable process analytical technology (PAT) to monitor protein crystallization processes can be complicated. In heterogeneous mixtures, important product characteristics can be found by multivariate analysis and chemometrics, thus contributing to the development of a thorough process understanding. In this project, an analytical set-up is established combining offline analytics, on-line ultraviolet visible light (UV/Vis) spectroscopy, and in-line Raman spectroscopy to monitor a stirred-batch crystallization process with multiple phases and species being present. As an example process, the enzyme alcohol dehydrogenase (LADH) was crystallized from clarified Escherichia coli () lysate on a 300 mL scale in five distinct experiments, with the experimental conditions changing in terms of the initial lysate solution preparation method and precipitant concentration. Since UV/Vis spectroscopy is sensitive to particles, a cross-flow filtration (cross-flow filtration)-based bypass enabled the on-line analysis of the liquid phase providing information on the lysate composition regarding the nucleic acid to protein ratio. A principal component analysis (PCA) of Raman spectra supported the identification of spectra and wavenumber ranges associated with productspecific information and revealed that the experiments followed a comparable, spectral trend when crystals were present. Based on preprocessed Raman spectra, a partial least squares (PLS) regression model was optimized to monitor the target molecule concentration in real-time. The off-line sample analysis provided information on the crystal number and crystal geometry by automated image analysis as well as the concentration of ADH and host cell proteins (HCPs) In spite of a complex lysate suspension containing scattering crystals and various impurities, it was possible to monitor the target molecule concentration in a heterogeneous, multi-phase process using spectroscopic methods. With the presented analytical set-up of off-line, particle-sensitive on-line, and in-line analyzers, a crystallization capture process can be characterized better in terms of the geometry, yield, and purity of the crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133712PMC
http://dx.doi.org/10.3389/fbioe.2024.1397465DOI Listing

Publication Analysis

Top Keywords

protein crystallization
12
complex lysate
8
raman spectroscopy
8
crystallization processes
8
analytical set-up
8
uv/vis spectroscopy
8
raman spectra
8
monitor target
8
target molecule
8
molecule concentration
8

Similar Publications

Structural insights into the role of the prosegment binding loop in a papain-superfamily cysteine protease from Treponema denticola.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.

Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.

View Article and Find Full Text PDF

Background: (Lour.) Merr. is a plant used in traditional Chinese medicine that reduces hepatotoxicity, relieves kidney discomfort, and has anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.

View Article and Find Full Text PDF

The molecular basis of Human FN3K mediated phosphorylation of glycated substrates.

Nat Commun

January 2025

Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, New York, 11724, USA.

Glycation, a non-enzymatic post-translational modification occurring on proteins, can be actively reversed via site-specific phosphorylation of the fructose-lysine moiety by FN3K kinase, to impact the cellular function of the target protein. A regulatory axis between FN3K and glycated protein targets has been associated with conditions like diabetes and cancer. However, the molecular basis of this relationship has not been explored so far.

View Article and Find Full Text PDF

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair.

Carbohydr Polym

March 2025

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:

Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!