AI Article Synopsis

  • The study focuses on developing an artificial intelligence model to classify peripheral blood images for diagnosing acute leukemia (AL), which includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
  • Researchers collected 42,386 cell images from 282 patients and found that the ensemble model using EfficientNet-V1 and EfficientNet-V2 achieved high accuracy and performance in classifying 12 different cell types.
  • The developed model could significantly improve rapid and accurate leukemia diagnosis in healthcare settings, particularly for myeloblasts and lymphoblasts, which are critical in assessing the disease.

Article Abstract

Objective: Acute leukemia (AL) is a life-threatening malignant disease that occurs in the bone marrow and blood, and is classified as either acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL). Diagnosing AL warrants testing methods, such as flow cytometry, which require trained professionals, time, and money. We aimed to develop a model that can classify peripheral blood images of 12 cell types, including pathological cells associated with AL, using artificial intelligence.

Methods: We acquired 42,386 single-cell images of peripheral blood slides from 282 patients (82 with AML, 40 with ALL, and 160 with immature granulocytes).

Results: The performance of EfficientNet-V2 (B2) using the original image size exhibited the greatest accuracy (accuracy, 0.8779; precision, 0.7221; recall, 0.7225; and F1 score, 0.7210). The next-best accuracy was achieved by EfficientNet-V1 (B1), with a 256 × 256 pixels image. F1 score was the greatest for EfficientNet-V1 (B1) with the original image size. EfficientNet-V1 (B1) and EfficientNet-V2 (B2) were used to develop an ensemble model, and the accuracy (0.8858) and F1 score (0.7361) were improved. The classification performance of the developed ensemble model for the 12 cell types was good, with an area under the receiver operating characteristic curve above 0.9, and F1 scores for myeloblasts and lymphoblasts of 0.8873 and 0.8006, respectively.

Conclusions: The performance of the developed ensemble model for the 12 cell classifications was satisfactory, particularly for myeloblasts and lymphoblasts. We believe that the application of our model will benefit healthcare settings where the rapid and accurate diagnosis of AL is difficult.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135107PMC
http://dx.doi.org/10.1177/20552076241258079DOI Listing

Publication Analysis

Top Keywords

peripheral blood
12
ensemble model
12
acute myeloid
8
lymphoblastic leukemia
8
cell types
8
original image
8
image size
8
performance developed
8
developed ensemble
8
model cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!