Interfacial water on a metal surface acts as an active layer through the reorientation of water, thereby facilitating the energy transfer and chemical reaction across the metal surface in various physicochemical and industrial processes. However, how this active interfacial water collectively behaves on flat noble metal substrates remains largely unknown due to the experimental limitation in capturing librational vibrational motion of interfacial water and prohibitive computational costs at the first-principles level. Herein, by implementing a machine-learning approach to train neural network potentials, we enable performing advanced molecular dynamics simulations with accuracy at a nanosecond scale to map the distinct rotational motion of water molecules on a metal surface at room temperature. The vibrational density of states of the interfacial water with two-layer profiles reveals that the rotation and vibration of water within the strong adsorption layer on the metal surface behave as if the water molecules in the bulk ice, wherein the O-H stretching frequency is well consistent with the experimental results. Unexpectedly, the water molecules within the adjacent weak adsorption layer exhibit superdiffusive rotation, contrary to the conventional diffusive rotation of bulk water, while the vibrational motion maintains the characteristic of bulk water. The mechanism underlying this abnormal superdiffusive rotation is attributed to the translation-rotation decoupling of water, in which the translation is restrained by the strong hydrogen bonding within the bilayer interfacial water, whereas the rotation is accelerated freely by the asymmetric water environment. This superdiffusive rotation dynamics may elucidate the experimentally observed large fluctuation of the potential of zero charge on Pt and thereby the conventional Helmholtz layer model revised by including the contribution of interfacial water orientation. The surprising superdiffusive rotation of vicinal water next to noble metals will shed new light on the physicochemical processes and the activity of water molecules near metal electrodes or catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c04588 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!