Chronic kidney disease(CKD) is an insidious disease that has become a significant global public health issue due to its high incidence rate, low awareness, low diagnostic rate, poor prognosis, and high medical costs. Recent studies have shown that CKD development is associated with varying degrees of ferroptosis features. Traditional Chinese medicine(TCM) can regulate iron metabolism, lipid peroxidation, antioxidant systems to inhibit ferroptosis and delay the progression of CKD. Consequently, the intervention mechanism of ferroptosis has become one of the focuses of CKD research. TCM has thousands of years of traditional experience and wisdom. It focuses on the overall regulation of human body functions and can stimulate the body's disease resistance and recovery capabilities, which has certain advantages in treating CKD. However, there is currently a lack of comprehensive articles on the application of TCM in intervening ferroptosis to treat CKD and the pathogenesis of ferroptosis in CKD. Therefore, this article summarizes the latest research progress both domestically and internationally, briefly introduces the main mechanisms of ferroptosis, and systematically reviews the relationship between ferroptosis and CKD. The article integrates TCM theories related to ferroptosis in CKD, including "deficiency" "stasis" "phlegm turbidity" and "toxins" and summarizes the research status of active ingredients and herbal formulas in intervening ferroptosis to treat CKD. By considering ferroptosis from a new perspective, this article aims to provide new targets and directions for the application of TCM in treating CKD.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240111.701DOI Listing

Publication Analysis

Top Keywords

ferroptosis ckd
12
ckd
10
ferroptosis
10
chronic kidney
8
traditional chinese
8
treating ckd
8
application tcm
8
intervening ferroptosis
8
ferroptosis treat
8
treat ckd
8

Similar Publications

Article Synopsis
  • Renal fibrosis (RF) is a disease where excessive extracellular matrix buildup occurs, activating signaling pathways related to tissue repair and fibrosis, particularly affecting tubular epithelial cells (TECs).
  • The article highlights key biological mechanisms and pathways involved in RF, including cellular senescence, ferroptosis, autophagy, epithelial-mesenchymal transition, and the TGF-β/Smad signaling pathway.
  • A review of traditional Chinese medicine (TCM) finds promising results in using Chinese herbs to reduce RF and prevent chronic kidney disease (CKD), suggesting new strategies for treatment and clinical applications.
View Article and Find Full Text PDF

Nanomedicine embraces the treatment and prevention of acute kidney injury to chronic kidney disease transition: evidence, challenges, and opportunities.

Burns Trauma

November 2024

Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, No. 1 Longhu Middle Ring Road, Jinshui District, Zhengzhou 450000, P. R. China.

Acute kidney injury (AKI), a common kidney disease in which renal function decreases rapidly due to various etiologic factors, is an important risk factor for chronic kidney disease (CKD). The pathogenesis of AKI leading to CKD is complex, and effective treatments are still lacking, which seriously affects the prognosis and quality of life of patients with kidney disease. Nanomedicine, a discipline at the intersection of medicine and nanotechnology, has emerged as a promising avenue for treating kidney diseases ranging from AKI to CKD.

View Article and Find Full Text PDF

Introduction: Chronic kidney disease (CKD) has long represented a substantial global health challenge. Regrettably, current therapeutic interventions exhibit limited efficacy in halting the progression of CKD. Ferroptosis may play a crucial role in CKD, as indicated by substantial evidence.

View Article and Find Full Text PDF

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), for which no effective therapies are available. Hyperphosphatemia, a feature of CKD, is a well-known inducer of VC. High phosphate (HP)-induced ferroptosis plays a crucial role in CKD-related VC (CKD-VC), but the mechanisms remain unclear.

View Article and Find Full Text PDF

Radish red attenuates chronic kidney disease in obese mice through repressing oxidative stress and ferroptosis via Nrf2 signaling improvement.

Int Immunopharmacol

December 2024

Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; College of Modern Health Industry, Chongqing University of Education, Chongqing 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China. Electronic address:

Chronic kidney disease (CKD) presents a significant public health concern, with obesity being a prominent contributing factor to kidney disorders by inducing oxidative stress, lipotoxicity, and tubular cell injury. Natural anthocyanins extracted from red radishes (Raphanus sativus L.) exert antioxidant and anti-apoptotic functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!