A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning model for differentiating nasal cavity masses based on nasal endoscopy images. | LitMetric

Deep learning model for differentiating nasal cavity masses based on nasal endoscopy images.

BMC Med Inform Decis Mak

Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, Republic of Korea.

Published: May 2024

Background: Nasal polyps and inverted papillomas often look similar. Clinically, it is difficult to distinguish the masses by endoscopic examination. Therefore, in this study, we aimed to develop a deep learning algorithm for computer-aided diagnosis of nasal endoscopic images, which may provide a more accurate clinical diagnosis before pathologic confirmation of the nasal masses.

Methods: By performing deep learning of nasal endoscope images, we evaluated our computer-aided diagnosis system's assessment ability for nasal polyps and inverted papilloma and the feasibility of their clinical application. We used curriculum learning pre-trained with patches of nasal endoscopic images and full-sized images. The proposed model's performance for classifying nasal polyps, inverted papilloma, and normal tissue was analyzed using five-fold cross-validation.

Results: The normal scores for our best-performing network were 0.9520 for recall, 0.7900 for precision, 0.8648 for F1-score, 0.97 for the area under the curve, and 0.8273 for accuracy. For nasal polyps, the best performance was 0.8162, 0.8496, 0.8409, 0.89, and 0.8273, respectively, for recall, precision, F1-score, area under the curve, and accuracy. Finally, for inverted papilloma, the best performance was obtained for recall, precision, F1-score, area under the curve, and accuracy values of 0.5172, 0.8125, 0.6122, 0.83, and 0.8273, respectively.

Conclusion: Although there were some misclassifications, the results of gradient-weighted class activation mapping were generally consistent with the areas under the curve determined by otolaryngologists. These results suggest that the convolutional neural network is highly reliable in resolving lesion locations in nasal endoscopic images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138030PMC
http://dx.doi.org/10.1186/s12911-024-02517-zDOI Listing

Publication Analysis

Top Keywords

nasal polyps
16
deep learning
12
polyps inverted
12
nasal endoscopic
12
endoscopic images
12
inverted papilloma
12
area curve
12
nasal
11
computer-aided diagnosis
8
best performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!