Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Nasal polyps and inverted papillomas often look similar. Clinically, it is difficult to distinguish the masses by endoscopic examination. Therefore, in this study, we aimed to develop a deep learning algorithm for computer-aided diagnosis of nasal endoscopic images, which may provide a more accurate clinical diagnosis before pathologic confirmation of the nasal masses.
Methods: By performing deep learning of nasal endoscope images, we evaluated our computer-aided diagnosis system's assessment ability for nasal polyps and inverted papilloma and the feasibility of their clinical application. We used curriculum learning pre-trained with patches of nasal endoscopic images and full-sized images. The proposed model's performance for classifying nasal polyps, inverted papilloma, and normal tissue was analyzed using five-fold cross-validation.
Results: The normal scores for our best-performing network were 0.9520 for recall, 0.7900 for precision, 0.8648 for F1-score, 0.97 for the area under the curve, and 0.8273 for accuracy. For nasal polyps, the best performance was 0.8162, 0.8496, 0.8409, 0.89, and 0.8273, respectively, for recall, precision, F1-score, area under the curve, and accuracy. Finally, for inverted papilloma, the best performance was obtained for recall, precision, F1-score, area under the curve, and accuracy values of 0.5172, 0.8125, 0.6122, 0.83, and 0.8273, respectively.
Conclusion: Although there were some misclassifications, the results of gradient-weighted class activation mapping were generally consistent with the areas under the curve determined by otolaryngologists. These results suggest that the convolutional neural network is highly reliable in resolving lesion locations in nasal endoscopic images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138030 | PMC |
http://dx.doi.org/10.1186/s12911-024-02517-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!