A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonlinear model predictive control-Cross-coupling control with deep neural network feedforward for multi-hydraulic system synchronization control. | LitMetric

Nonlinear model predictive control-Cross-coupling control with deep neural network feedforward for multi-hydraulic system synchronization control.

ISA Trans

Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Anhui Extreme Environment Robot Engineering Laboratory, Hefei 230031, China.

Published: July 2024

This paper studies a multi-hydraulic system (MHS) synchronization control algorithm. Firstly, a general nonlinear asymmetric MHS state space entirety model is established and subsequently the model form is simplified by nonlinear feedback linearization. Secondly, an entirety model-type solution is proposed, integrating a nonlinear model predictive control (NMPC) algorithm with a cross-coupling control (CCC) algorithm. Furthermore, a novel disturbance compensator based on the system's inverse model is introduced to effectively handle disturbances, encompassing unmodeled errors and noise. The proposed innovative controller, known as nonlinear model predictive control-cross-coupling control with deep neural network feedforward (NMPC-CCC-DNNF), is designed to minimize synchronization errors and counteract the impact of disturbances. The stability of the control system is rigorously demonstrated. Finally, simulation results underscore the efficacy of the NMPC-CCC-DNNF controller, showcasing a remarkable 60.8% reduction in synchronization root mean square error (RMSE) compared to other controllers, reaching up to 91.1% in various simulations. These results affirm the superior control performance achieved by the NMPC-CCC-DNNF controller.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.05.016DOI Listing

Publication Analysis

Top Keywords

nonlinear model
12
model predictive
12
predictive control-cross-coupling
8
control
8
control-cross-coupling control
8
control deep
8
deep neural
8
neural network
8
network feedforward
8
multi-hydraulic system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!