Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tins.2024.04.004 | DOI Listing |
Neurology
September 2011
Banner Alzheimer's Institute, 901 E Willetta Street, Phoenix, AZ 85006, USA.
Arch Gen Psychiatry
August 2011
Banner Alzheimer's Institute, 901 E Willetta St., Phoenix, AZ 85006, USA.
Arch Neurol
October 2011
Division of Epidemiology, University of California, Berkeley, 94720-3190, USA.
Objective: To delineate the trajectories of Aβ42 level in cerebrospinal fluid (CSF), fludeoxyglucose F18 (FDG) uptake using positron emission tomography, and hippocampal volume using magnetic resonance imaging and their relative associations with cognitive change at different stages in aging and Alzheimer disease (AD).
Design: Cohort study.
Setting: The 59 study sites for the Alzheimer's Disease Neuroimaging Initiative.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!