Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Within the continuous tug-of-war between plants and microbes, RNA silencing stands out as a key battleground. Pathogens, in their quest to colonize host plants, have evolved a diverse arsenal of silencing suppressors as a common strategy to undermine the host's RNA silencing-based defenses. When RNA silencing malfunctions in the host, genes that are usually targeted and silenced by microRNAs (miRNAs) become active and can contribute to the reprogramming of host cells, providing an additional defense mechanism. A growing body of evidence suggests that miRNAs may act as intracellular sensors to enable a rapid response to pathogen threats. Herein we review how plant miRNA targets play a crucial role in immune responses against different pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2024.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!