Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132705 | DOI Listing |
PLoS One
December 2024
Drug Standardization, Central Council for Research in Homoeopathy, New Delhi, India.
Oxidative stress and inflammation are the most common pathologies in immune-compromised diseases and cancer treatments. The study examined the immune stimulation properties of Bryonia alba (BA) in different potencies (6C, 30C, and 200C) on a BALB/c mice model with a compromised immune system induced by cyclophosphamide (CPM) at a dose of 80 mg/kg. Seventy mice (35 males and 35 females) were randomly distributed into seven groups of 5 animals/sex.
View Article and Find Full Text PDFSubcell Biochem
December 2024
ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain.
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX).
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, 119991 Moscow, Russia.
The white poplar () is a dioecious woody plant with significant potential for the phytoremediation of soils. To realize this potential, it is necessary to utilize growth-promoting microorganisms. One potential source of such beneficial microorganisms is the rhizosphere community of wild-growing trees.
View Article and Find Full Text PDFFront Chem
December 2024
Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterial, Water and Environment, CERNE2D, Mohammed V University in Rabat, Faculty of Science, Rabat, Morocco.
Introduction: Morocco is home to a remarkable diversity of flora, including several species from the Artemisia genus. This study aims to thoroughly examine the chemical composition of essential oils derived from Artemisia species and assess their antibacterial and antioxidant properties through in vitro experiments and in silico simulations.
Methods: Samples of Artemisia herba-alba Asso.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!