Enshi, China, is renowned as "Selenium(Se) Capital" where widely distributed soils derived from Permian parent rocks are notably rich in Se, as well as metals, particularly cadmium(Cd). However, the soil enrichment and crop uptake of Se and metals in these high-Se and high-Cd areas are not well understood. To propose the optimal crop planting plan to ensure the safety of agricultural products, we investigated the soils and corresponding typical crops (rice, tea, and maize). The results showed significant soil enrichment of elements, with average contents (mg/kg) as follows: Cr (185), Zn (126), Cu (58.8), Pb (31.1), As (15.7), Se (6.85), Cd (5.41), and Hg (0.211). All soil Se contents were above 0.4 mg/kg, indicating Se-rich soils. Se primarily existed in an organic-bound form, accounting for an average proportion of 61.3%, while Cd was mainly exchangeable, with an average of 62.5%. Cd exhibited higher activity according to the Relative Index of Activity (RIA). Nemerow single-factor index analysis confirmed significant soil contamination, with Cd showing the highest level, followed by Cr and Cu, while Pb had the lowest level. Tea exhibited a high Se rich ratio (82.0%) without exceeding the Cd standard. In contrast, corn and rice had relatively lower Se-rich ratios (42.0% and 51.5% respectively) and high rates of Cd exceeding the standard, at 49.0% and 61.0% respectively. Canonical analysis revealed that rice was more influenced by soil factors related to Se and Cd compared to maize and tea crops. Therefore, tea cultivation in the Enshi Permian soil area is recommended for safe crop production. This study provides insights into the enrichment, fractionation, and bioavailability of soil Se, Cd, and other metals in the high-Se and high-Cd areas of permian stratas in Enshi, offering a scientific basis for selecting local food crops and producing safe Se-rich agricultural products in the region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142472DOI Listing

Publication Analysis

Top Keywords

enrichment crop
8
soil enrichment
8
metals high-se
8
high-se high-cd
8
high-cd areas
8
agricultural products
8
exceeding standard
8
soil
7
rhizosphere enrichment
4
crop
4

Similar Publications

Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.

View Article and Find Full Text PDF

Cotton RLP6 Interacts With NDR1/HIN6 to Enhance Verticillium Wilt Resistance via Altering ROS and SA.

Mol Plant Pathol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Provincial Key Laboratory of Crop Germplasm Resources, Hebei Agricultural University, Baoding, China.

Cotton Verticillium wilt (VW) is often a destructive disease that results in significant fibre yield and quality losses in Gossypium hirsutum. Transferring the resistance trait of Gossypium barbadense to G. hirsutum is optional but challenging in traditional breeding due to limited molecular dissections of resistance genes.

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

The Purple Tomato Story; From Laboratory Bench to the Consumer.

ACS Food Sci Technol

January 2025

John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K.

A world apart from academic research, the path from developing a polyphenol-rich crop to a product available to consumers is not one taken by many research scientists. Here we review the steps taken to commercialize anthocyanin-enriched purple tomatoes in the USA. In describing some of the difficulties encountered and the work that was necessary for a successful commercial launch of a new biotech product, we hope to encourage others to believe that there is a viable route to market, and an appetite for polyphenol-enriched foods that can protect health.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!