Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The secondary sex ratio (SSR), defined as the ratio of male to female offspring at birth, has garnered significant scientific interest due to its potential impact on population dynamics and evolution. In recent years, there has been a growing concern regarding the potential consequences of environmental chemicals on the SSR, given their widespread exposure and potential enduring ramifications on the reproductive system. While SSR serves as an indicator of health, ongoing research and scientific inquiry are being conducted to explore the potential relationship between chemicals and offspring ratio. Although some studies have suggested a possible correlation, others have yielded inconclusive results, indicating that the topic is intricate and still needs to be elucidated. The precise mechanism by which chemical agents exert their influence on the SSR remains ambiguous, with disruption of the endocrine system being a prominent justification. In light of the complex interplay between chemical exposure and SSR, the present review aims to comprehensively examine and synthesize existing scientific literature to gain a deeper understanding of how specific chemical exposures may impact SSR. Insights into chemical hazards that shift SSR patterns or trends could guide prevention strategies, including legislative bans of certain chemicals, to minimize environmental and public health risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!