Gut dysbiosis contributes to SCFAs reduction-associated adipose tissue macrophage polarization in gestational diabetes mellitus.

Life Sci

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Published: August 2024

Aims: The prevalence of gestational diabetes mellitus (GDM) has spurred investigations into various interconnected factors, among which gut dysbiosis is notably prominent. Although gut dysbiosis is strongly associated with GDM, the specific role of the gut microbiome in the pathogenesis of GDM remains unknown. This study aims to explore the pathogenesis of GDM from gut microbiota.

Materials And Methods: In our study, we constructed two GDM mice models: one induced by a high-fat diet (HFD) and the other through fecal microbiota transplantation (FMT) from GDM patients. In vitro, we used a co-culture system of RAW264.7 and 3T3-L1 adipocytes.

Key Findings: We induced a GDM-like state in pregnant mice by FMT from GDM patients, which was consistent with the HFD model. A potential mechanism identified involves the diminished abundance of SCFA-producing microbiota, which reduces SCFAs, particularly propionic acid and butyric acid. In vitro, butyric and propionic acids were observed to alleviate LPS-induced TLR4-NF-κB activation, thereby reducing inflammation levels and inhibiting adipose insulin resistance via the PI3K/AKT signaling pathway. This reduction appears to trigger the polarization of adipose tissue macrophages toward M1 and promote insulin resistance in adipose tissue.

Significance: Our study fills this knowledge gap by finding that alterations in gut microbiota have an independent impact on hyperglycemia and insulin resistance in the GDM state. In vivo and in vitro, gut dysbiosis is linked to adipose tissue inflammation and insulin resistance via the bacterial product SCFAs in the GDM state, providing new insights into the pathogenesis of GDM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.122744DOI Listing

Publication Analysis

Top Keywords

gut dysbiosis
16
insulin resistance
16
adipose tissue
12
pathogenesis gdm
12
gdm
10
gestational diabetes
8
diabetes mellitus
8
fmt gdm
8
gdm patients
8
gdm state
8

Similar Publications

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is the most prevalent form of arthritis and affects over 528 million people worldwide. Degenerative joint disease involves cartilage degradation, subchondral bone remodeling, and synovial inflammation, leading to chronic pain, stiffness, and impaired joint function. Initially regarded as a "wear and tear" condition associated with aging and mechanical stress, OA is now recognized as a multifaceted disease influenced by systemic factors such as metabolic syndrome, obesity, and chronic low-grade inflammation.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

The Gut Microbiota-Related Antihyperglycemic Effect of Metformin.

Pharmaceuticals (Basel)

January 2025

Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland.

It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!