The accumulation of soil carbon (C) is crucial for the productivity and ecological function of farmland ecosystems. The balance between microbial carbon dioxide (CO) emission and fixation determines the sustained accumulation potential of C in soil. Microorganisms involved in this process are highly obscure, thus hindering identification and further application of microorganisms with fertile soil function. In this study, a series of typical upland farmland soils were collected from 29 regions and their microbial community structure and soil C fractions were analyzed. Additionally, the rates of CO emission and fixation in each soil were measured. The results showed that the correlation between soil CO emissions and the SOC concentration was logarithmic, while that between CO fixation and SOC was linear. Bacterial and fungal diversity showed an upward trend with increasing soil C, and their α diversity was significantly correlated with CO fixation, but not correlated with CO emission. Fungi were more associated with soil C than bacteria, and the strength of linkage with soil C varied among the different phyla of microorganisms. Furthermore, the core microbial taxa in soils with low, medium and high SOC levels were identified by discarding redundant amplicon sequence variants, and their community differentiation was significantly driven by soil CO emission and fixation based on Mantel analysis. The high abundance of Chloroflexi, Nitrospirota, Actinobacteria, and Mortierellomycota in core taxa might indicate a high level of SOC level. This study highlights that SOC fluctuations are mainly driven by the core microbial taxa, rather than all microbial taxa in the agricultural system. Our research sheds light on the targeted regulation of the soil microbial community structure in upland farmland for soil fertility enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173300 | DOI Listing |
Biodegradation
December 2024
Department of Civil engineering, Islamic Azad university, Mashhad Branch, Iran.
The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Agronomy, Faculty of Agricultural Sciences, SGT University, Gurugram, India.
Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.
View Article and Find Full Text PDFCurr Microbiol
December 2024
Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!