Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265985 | PMC |
http://dx.doi.org/10.1016/j.devcel.2024.04.014 | DOI Listing |
Alzheimers Dement
December 2024
Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
Introduction: Aggregation of hyperphosphorylated tau (tauopathy) is associated with cognitive impairment in patients with Alzheimer's disease (AD). In AD, a metabolic shift due to the Warburg effect results in increased lactate production. Lactate can induce a post-translational modification (PTM) on proteins that conjugates lactyl groups to lysine (K) residues, which is known as lactylation.
View Article and Find Full Text PDFJ Med Virol
January 2025
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, State Key Laboratory of Advanced Medical Materials and Devices, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
Multinucleated cells are present in lung tissues of patients infected by SARS-CoV-2. Although the spike protein can cause the fusion of infected cells and ACE2-expressing cells to form syncytia and induce damage, how host cell responses to this damage and the role of DNA damage response (DDR) signals in cell fusion are still unclear. Therefore, we investigated the effect of SARS-CoV-2 spike protein on the fusion of homologous and heterologous cells expressing ACE2 in vitro models, focusing on the protein levels of ATR and ATM, the major kinases responding to DNA damage, and their substrates CHK1 and CHK2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan. Electronic address:
The formation of the pyroglutamate variant of amyloid beta (pGlu-Aβ), which is extremely hydrophobic, rapidly aggregating, and highly neurotoxic, is mediated by the action of secretory glutaminyl cyclase (sQC). The pGlu-Aβ often acts as a seed for the aggregation of the full length Aβ and contributes to the overall load of Aβ plaques in Alzheimer's disease (AD). Therefore, inhibiting sQC is a potential approach to limit the formation of pGlu-Aβ and to modify the progression of AD.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Physics of the Condensed Matter, C03 and IFIMAC (Instituto de Física de la Materia Condensada). Universidad Autónoma de Madrid, Madrid, Spain.
Atomic force microscopy (AFM) makes it possible to obtain images at nanometric resolution, and to accomplish the manipulation and physical characterization of specimens, including the determination of their mechanical and electrostatic properties. AFM has an ample range of applications, from materials science to biology. The specimen, supported on a solid surface, can be imaged and manipulated while working in air, ultra-high vacuum or, most importantly for virus studies, in liquid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!