Medical imaging offered a non-invasive window to visualize tumors, with radiomics transforming these images into quantitative data for tumor phenotyping. However, the intricate web linking imaging features, clinical endpoints, and tumor biology was mostly uncharted. This study aimed to unravel the connections between CT imaging features and clinical characteristics, including tumor histopathological grading, clinical stage, and endocrine symptoms, alongside immunohistochemical markers of tumor cell growth, such as the Ki-67 index and nuclear mitosis rate.We conducted a retrospective analysis of data from 137 patients with pancreatic neuroendocrine tumors who had undergone contrast-enhanced CT scans across two institutions. Our study focused on three clinical factors: pathological grade, clinical stage, and endocrine symptom status, in addition to two immunohistochemical markers: the Ki-67 index and the rate of nuclear mitosis. We computed both predefined (2D and 3D) and learning-based features (via sparse autoencoder, or SAE) from the scans. To unearth the relationships between imaging features, clinical factors, and immunohistochemical markers, we employed the Spearman rank correlation along with the Benjamini-Hochberg method. Furthermore, we developed and validated radiomics signatures to foresee these clinical factors.The 3D imaging features showed the strongest relationships with clinical factors and immunohistochemical markers. For the association with pathological grade, the mean absolute value of the correlation coefficient (CC) of 2D, SAE, and 3D features was 0.3318 ± 0.1196, 0.2149 ± 0.0361, and 0.4189 ± 0.0882, respectively. While for the association with Ki-67 index and rate of nuclear mitosis, the 3D features also showed higher correlations, with CC as 0.4053 ± 0.0786 and 0.4061 ± 0.0806. In addition, the 3D feature-based signatures showed optimal performance in clinical factor prediction.We found relationships between imaging features, clinical factors, and immunohistochemical markers. The 3D features showed higher relationships with clinical factors and immunohistochemical markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad51c7 | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Ophthalmology, Hospital Universitario de Canarias, Carretera Ofra S/N, La Laguna, Santa Cruz de Tenerife, 38320, SPAIN.
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!