. Optical fiber-based scintillating dosimetry is a recent promising technique owing to the miniature size dosimeter and quality measurement in modern radiation therapy treatment. Despite several advantages, the major issue of using scintillating dosimeters is the Cerenkov effect and predominantly requires extra measurement corrections. Therefore, this work highlighted a novel micro-dosimetry technique to ensure Cerenkov-free measurement in radiation therapy treatment protocol by investigating several dosimetric characteristics.A micro-dosimetry technique was proposed with the performance evaluation of a novel infrared inorganic scintillator detector (IR-ISD). The detector essentially consists of a micro-scintillating head based on IR-emitting micro-clusters with a sensitive volume of 1.5 × 10mm. The proposed system was evaluated under the 6 MV LINAC beam used in patient treatment. Overall measurements were performed using IBAwater tank phantoms by following TRS-398 protocol for radiotherapy. Cerenkov measurements were performed for different small fields from 0.5 × 0.5 cmto 10 × 10 cmunder LINAC. In addition, several dosimetric parameters such as percentage depth dose (PDD), high lateral resolution beam profiling, dose linearity, dose rate linearity, repeatability, reproducibility, and field output factor were investigated to realize the performance of the novel detector.. This study highlighted a complete removal of the Cerenkov effect using a point-like miniature detector, especially for small field radiation therapy treatment. Measurements demonstrated that IR-ISD has acceptable behavior with dose rate variability (maximum standard deviation ∼0.18%) for the dose rate of 20-1000 cGy s. An entire linear response (= 1) was obtained for the dose delivered within the range of 4-1000 cGy, using a selected field size of 1 × 1 cm. Perfect repeatability (max 0.06% variation from average) with day-to-day reproducibility (0.10% average variation) was observed. PDD profiles obtained in the water tank present almost identical behavior to the reference dosimeter with a build-up maximum depth dose at 1.5 cm. The small field of 0.5 × 0.5 cmprofiles have been characterized with a high lateral resolution of 100m.. Unlike recent plastic scintillation detector systems, the proposed micro-dosimetry system in this study requires no Cerenkov corrections and showed efficient performance for several dosimetric parameters. Therefore, it is expected that considering the detector correction factors, the IR-ISD system can be a suitable dose measurement tool, such as in small-field dose measurements, high and low gradient dose verification, and, by extension, in microbeam radiation and FLASH radiation therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ad51c6DOI Listing

Publication Analysis

Top Keywords

radiation therapy
20
therapy treatment
12
dose rate
12
dose
10
micro-dosimetry technique
8
treatment measurements
8
measurements performed
8
dosimetric parameters
8
depth dose
8
high lateral
8

Similar Publications

Validation of clearcalc for efficient patient specific QA.

Med Dosim

January 2025

Medical Technology, Health Information and Research Directorate, Ministry of Health, Jerusalem, Israel.

Uganda's only radiotherapy center is a very busy facility treating about 210 patients daily on three linear accelerators making it sometimes hard to have machine time for pretreatment QAs. This study was aimed at validating an independent calculation software, ClearCalc (ICS) for second checks of the treatment planning system (TPS) calculations. The validation of ICS started with simple phantom test plans consisting of square, irregular, open and wedged fields designed in the TPS and measured in phantoms.

View Article and Find Full Text PDF

This study presents a patient with a PET-CT detected residual lacrimal sac tumor who was treated with intensity modulated proton therapy (IMPT) and concurrent chemotherapy. The patient a 49-year-old male diagnosed with squamous cell carcinoma of the left lacrimal sac had under-went endoscopic surgery. Postoperative PET-CT implied tumor residual in the left lacrimal sac.

View Article and Find Full Text PDF

Efficacy and safety of chemotherapy combined with iodine-125 seed brachytherapy for intermediate and advanced oncogenic driver gene-negative non-small cell lung cancer.

Brachytherapy

January 2025

Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui 230022, PR China. Electronic address:

Purpose: To compare the effectiveness and safety of CT-guided iodine-125 seed brachytherapy in conjunction with chemotherapy against chemotherapy alone for the management of intermediate and advanced non-small cell lung cancer (NSCLC) lacking oncogenic driving genes.

Methods And Materials: Retrospective analysis was conducted on clinical data from 128 patients diagnosed with intermediate and advanced non-small cell lung cancer who received iodine-125 combined with chemotherapy or chemotherapy alone due to the absence of oncogenic driver gene mutations. The patients in two groups were compared at 6-month follow-up for objective remission rate (ORR), Disease control rate (DCR), local progression-free survival (LPFS), overall survival (OS), clinical symptom improvement, and adverse events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!