Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Assessing cochlear implantation's impact on cell loss and preventing post-implant cochlear damage are key areas of focus for hearing preservation research. The preservation of auditory neuronal and sensory neural hearing cells has a positive impact on auditory perception after implantation. This study aimed to provide details on a semi-automated spiral ganglion neuronal cell counting method, developed using whole implanted gerbil cochlea acquisitions with light-sheet microscopy.
Methods: Mongolian gerbils underwent right cochlear implantation with an electrode array whose silicone was loaded with dexamethasone or not and were euthanized 10 weeks after implantation. The cochleae were prepared according to a 29-day protocol, with the electrode array in place. Light-sheet microscopy was used for acquisition, and Imaris software was employed for three-dimensional analysis of the cochleas and semi-automatic quantification of spiral ganglion cells. The imaJ software was used for the manual quantification of these cells.
Results: Six cochleae were acquired by light-sheet microscopy, allowing good identification of cells. There was no significant difference between the mean number of spiral ganglion cells obtained by manual and semi-automatic counting (p = 0.25).
Conclusion: Light-sheet microscopy provided complete visualization of the spiral ganglion and cell identification. The semi-automated counting method developed using Imaris software tools proved reliable and efficient and could be applied to a larger sample to assess post-cochlear implant cell damage and the efficacy of protective drugs delivered to the inner ear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000539569 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!