Contactless mechanical stimulation of the skin using shear waves.

J Mech Behav Biomed Mater

Univ Lyon, Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, UMR5513, 69130, Ecully, France. Electronic address:

Published: August 2024

AI Article Synopsis

Article Abstract

The skin, the outermost organ of the human body, is vital for sensing and responding to stimuli through mechanotransduction. It is constantly exposed to mechanical stress. Consequently, various mechanical therapies, including compression, massage, and microneedling, have become routine practices for skin healing and regeneration. However, these traditional methods require direct skin contact, restricting their applicability. To address this constraint, we developed shear wave stimulation (SWS), a contactless mechanical stimulation technique. The effectiveness of SWS was compared with that of a commercial compression bioreactor used on reconstructed skin at various stages of maturity. Despite the distinct stimulus conditions applied by the two methods, SWS yielded remarkable outcomes, similar to the effects of the compression bioreactor. It significantly increased the shear modulus of tissue-engineered skin, heightened the density of collagen and elastin fibers, and resulted in an augmentation of fibroblasts in terms of their number and length. Notably, SWS exhibited diverse effects in the low- and high-frequency modes, highlighting the importance of fine-tuning the stimulus intensity. These results unequivocally demonstrated the capability of SWS to enhance the mechanical functions of the skin in vitro, making it a promising option for addressing wound healing and stretch mark recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106597DOI Listing

Publication Analysis

Top Keywords

contactless mechanical
8
mechanical stimulation
8
compression bioreactor
8
skin
7
sws
5
stimulation skin
4
skin shear
4
shear waves
4
waves skin
4
skin outermost
4

Similar Publications

Microscopic augmented reality calibration with contactless line-structured light registration for surgical navigation.

Med Biol Eng Comput

January 2025

Mechanical Engineering Department, Tianjin University, No. 135, Yaguan Road, Haihe Education Park, Jinnan District, Tianjin City, 300350, China.

The use of AR technology in image-guided neurosurgery enables visualization of lesions that are concealed deep within the brain. Accurate AR registration is required to precisely match virtual lesions with anatomical structures displayed under a microscope. The purpose of this work was to develop a real-time augmented surgical navigation system using contactless line-structured light registration, microscope calibration, and visible optical tracking.

View Article and Find Full Text PDF

Pneumatic conveying inkjet bioprinting for the processing of living cells.

Biofabrication

January 2025

Research Group Anatomy, School for Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Str.9-11, Oldenburg, 26129, GERMANY.

Inkjet printing techniques are often used for bioprinting purposes because of their excellent printing characteristics, such as high cell viability and low apoptotic rate, contactless modus operandi, commercial availability, and low cost. However, they face some disadvantages, such as the use of bioinks of low viscosity, cell damage due to shear stress caused by drop ejection and jetting velocity, as well as a narrow range of available bioinks that still challenge the inkjet printing technology. New technological solutions are required to overcome these obstacles.

View Article and Find Full Text PDF

Progress of extracorporeal centrifugal pumps for mechanical circulatory supports.

J Artif Organs

January 2025

Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 5648565, Japan.

This review traces the evolution of centrifugal blood pumps in mechanical circulatory support (MCS) systems. Initially met with concerns over blood damage and thrombus formation, centrifugal pumps have become crucial components in ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) due to their simplified drive mechanisms and adaptability. This paper outlines three generations of centrifugal pump development: first-generation pumps with sealing components, second-generation pumps utilizing pivot bearings, and third-generation pumps employing contactless bearings.

View Article and Find Full Text PDF

Magneto-responsiveness in living organisms, exemplified by migratory birds navigating vast distances, offers inspiration for soft robots and human-computer interfaces. However, achieving both high magneto-responsiveness and resilient mechanical properties in synthetic materials has been challenging. Here, we develop magneto-iono-elastomers (MINEs), combining exceptional magnetization [2.

View Article and Find Full Text PDF

Photothermal-triggering shape memory polyurethane allows for precise and controllable shape transformation under remote light stimulation, making it highly desirable for applications in intelligent devices. This study develops a sustainable and high-performance lignin-based polyurethane (LPU) using a one-stone-two-birds strategy, wherein lignin serves as both a synthetic monomer and an internal photothermal agent. The incorporation of lignin significantly improved the mechanical properties of LPU, achieving a tensile strength of 42.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!