A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The structural, antioxidant and emulsifying properties of cellulose nanofiber-dihydromyricetin mixtures: Effects of composite ratio. | LitMetric

The structural, antioxidant and emulsifying properties of cellulose nanofiber-dihydromyricetin mixtures: Effects of composite ratio.

Food Chem

School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China. Electronic address:

Published: October 2024

In this work, effects of cellulose nanofiber/dihydromyricetin (CNF/DMY) ratio on the structural, antioxidant and emulsifying properties of the CNF/DMY mixtures were investigated. CNF integrated with DMY via hydrogen bonding and the antioxidant capacity of mixtures increased with decreasing CNF/DMY ratio (k). The oxidative stability of emulsions enhanced as the DMY content increased. Emulsions formed at Φ = 0.5 displayed larger size (about 25 μm), better viscoelasticity and centrifugal stability than those at Φ = 0.3 (about 23 μm). The emulsions at k = 17:3 and Φ = 0.5 exhibited the most excellent viscoelasticity. In conclusion, the DMY content in mixtures and the oil phase fraction exhibited distinct synergistic effects on the formation and characteristics of emulsions, and the emulsions could demonstrate superior oxidative and storage stability. These findings could provide a novel strategy to extend the shelf life of cellulose-based emulsions and related products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139803DOI Listing

Publication Analysis

Top Keywords

structural antioxidant
8
antioxidant emulsifying
8
emulsifying properties
8
cnf/dmy ratio
8
dmy content
8
emulsions
6
properties cellulose
4
cellulose nanofiber-dihydromyricetin
4
mixtures
4
nanofiber-dihydromyricetin mixtures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!