The integration of smartphones with conventional analytical approaches plays a crucial role in enhancing on-site detection platforms for point-of-care testing. Here, we developed a simple, rapid, and efficient three-channel colorimetric sensor array, leveraging the peroxidase (POD)-like activity of polydopamine-decorated FeNi foam (PDFeNi foam), to identify antioxidants using both microplate readers and smartphones for signal readouts. The exceptional catalytic capacity of PDFeNi foam enabled the quick catalytic oxidation of three typical peroxidase substrates (TMB, OPD and 4-AT) within 3 min. Consequently, we constructed a colorimetric sensor array with cross-reactive responses, which was successfully applied to differentiate five antioxidants (i.e., glycine (GLY), glutathione (GSH), citric acid (CA), ascorbic acid (AA), and tannic acid (TAN)) within the concentration range of 0.1-10 μM, quantitatively analyze individual antioxidants (with AA and CA as model analytes), and assess binary mixtures of AA and GSH. The practical application was further validated by discriminating antioxidants in serum samples with a smartphone for signal readout. In addition, since pesticides could be absorbed on the surface of PDFeNi foam through π-π stacking and hydrogen bonding, the active sites were differentially masked, leading to featured modulation on POD-like activity of PDFeNi foam, thereby forming the basis for pesticides discrimination on the sensor array. The nanozyme-based sensor array provides a simple, rapid, visual and high-throughput strategy for precise identification of various analytes with a versatile platform, highlighting its potential application in point-care-of diagnostic, food safety and environmental surveillance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126275 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFTalanta
December 2024
School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China. Electronic address:
The study of cell mechanics was significant for understanding cellular physiological functions, the mechanisms of disease occurrence, and the development of novel therapeutic approaches. However, research on the mechanism of mechanical strain action at the single-cell level was relatively lacking. Herein, we developed a serpentine stretchable sensor array capable of exerting precise mechanical strain on cells and monitoring extracellular pH (pHe) changes at single cell level.
View Article and Find Full Text PDFUltrasonics
December 2024
Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, AZ 85721, USA; Aerospace and Mechanical Engineering Department, Materials Science and Engineering Department, University of Arizona, Tucson, AZ 85721, USA.
In the field of engineering structural health monitoring, acoustic source localization (ASL) is a common method to monitor early damage. Most of the existing ASL techniques have high requirements for accurate acquisition of time of arrival, and require complex iterative algorithms or signal processing techniques, which are not conducive to real-time monitoring. In this paper, a signal energy approach of acoustic source localization in plate structures using a discrete sensor array is proposed.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, College of Life Science, China Jiliang University, Hangzhou 310018, China.
Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China.
Sarcopenia has been a serious concern in the context of an increasingly aging global population. Existing detection methods for sarcopenia are severely constrained by cumbersome devices, the necessity for specialized personnel, and controlled experimental environments. In this study, we developed an innovative wearable fabric system based on conductive fabric and flexible sensor array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!