Background And Objective: Comparative diagnostic in brain tumor evaluation makes possible to use the available information of a medical center to compare similar cases when a new patient is evaluated. By leveraging Artificial Intelligence models, the proposed system is able of retrieving the most similar cases of brain tumors for a given query. The primary objective is to enhance the diagnostic process by generating more accurate representations of medical images, with a particular focus on patient-specific normal features and pathologies. A key distinction from previous models lies in its ability to produce enriched image descriptors solely from binary information, eliminating the need for costly and difficult to obtain tumor segmentation.
Methods: The proposed model uses Artificial Intelligence to detect patient features to recommend the most similar cases from a database. The system not only suggests similar cases but also balances the representation of healthy and abnormal features in its design. This not only encourages the generalization of its use but also aids clinicians in their decision-making processes. This generalization makes possible for future research in different medical diagnosis areas with almost not any change in the system.
Results: We conducted a comparative analysis of our approach in relation to similar studies. The proposed architecture obtains a Dice coefficient of 0.474 in both tumoral and healthy regions of the patients, which outperforms previous literature. Our proposed model excels at extracting and combining anatomical and pathological features from brain Magnetic Resonances (MRs), achieving state-of-the-art results while relying on less expensive label information. This substantially reduces the overall cost of the training process. Our findings highlight the significant potential for improving the efficiency and accuracy of comparative diagnostics and the treatment of tumoral pathologies.
Conclusions: This paper provides substantial grounds for further exploration of the broader applicability and optimization of the proposed architecture to enhance clinical decision-making. The novel approach presented in this work marks a significant advancement in the field of medical diagnosis, particularly in the context of Artificial Intelligence-assisted image retrieval, and promises to reduce costs and improve the quality of patient care using Artificial Intelligence as a support tool instead of a black box system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108228 | DOI Listing |
J Chem Inf Model
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
Background And Objective: Patients with thoracic aortic aneurysm and dissection (TAAD) are often asymptomatic but present acutely with life threatening complications that necessitate emergency intervention. Aortic diameter measurement using computed tomography (CT) is considered the gold standard for diagnosis, surgical planning, and monitoring. However, manual measurement can create challenges in clinical workflows due to its time-consuming, labour-intensive nature and susceptibility to human error.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Division of Advanced Gastrointestinal and Bariatric Surgery, Mayo Clinic, Jacksonville, FL, USA.
Background: Addressing language barriers through accurate interpretation is crucial for providing quality care and establishing trust. While the ability of artificial intelligence (AI) to translate medical documentation has been studied, its role for patient-provider communication is less explored. This review evaluates AI's effectiveness in clinical translation by assessing accuracy, usability, satisfaction, and feedback on its use.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!