Graphene-Enhanced UV-C LEDs.

Adv Mater

Werkstoffe der Elektrotechnik and CENIDE, University of Duisburg-Essen, Bismarckstraße 81, 47057, Duisburg, Germany.

Published: August 2024

Light-emitting diodes in the UV-C spectral range (UV-C LEDs) can potentially replace bulky and toxic mercury lamps in a wide range of applications including sterilization and water purification. Several obstacles still limit the efficiencies of UV-C LEDs. Devices in flip-chip geometry suffer from a huge difference in the work functions between the p-AlGaN and high-reflective Al mirrors, whereas the absence of UV-C transparent current spreading layers limits the development of UV-C LEDs in standard geometry. Here it is demonstrated that transfer-free graphene implemented directly onto the p-AlGaN top layer by a plasma enhanced chemical vapor deposition approach enables highly efficient 275 nm UV-C LEDs in both, flip-chip and standard geometry. In flip-chip geometry, the graphene acts as a contact interlayer between the Al-mirror and the p-AlGaN enabling an external quantum efficiency (EQE) of 9.5% and a wall-plug efficiency (WPE) of 5.5% at 8 V. Graphene combined with a ≈1 nm NiO support layer allows a turn-on voltage <5 V. In standard geometry graphene acts as a current spreading layer on a length scale up to 1 mm. These top-emitting devices exhibit a EQE of 2.1% at 8.7 V and a WPE of 1.1%.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313037DOI Listing

Publication Analysis

Top Keywords

uv-c leds
20
flip-chip geometry
8
standard geometry
8
uv-c
6
leds
5
graphene-enhanced uv-c
4
leds light-emitting
4
light-emitting diodes
4
diodes uv-c
4
uv-c spectral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!