Ultrasmall metal oxide nanoparticles (<5 nm) potentially have new properties, different from conventional nanoparticles. The precise size control of ultrasmall nanoparticles remains difficult for metal oxide. In this study, the size of CeO nanoparticles was precisely controlled (1.3-9.4 nm) using a continuous-flow hydrothermal reactor, and the atomic distortion that occurs in ultrasmall metal oxides was explored for CeO. The crystalline nanoparticles grow rapidly like droplets via coalescence, although they reach a critical particle size (∼3 to 4 nm), beyond which they grow slowly and change shape through ripening. In the initial growth stage, the ultrasmall nanoparticles exhibit disordered atomic configurations, including stacking faults. In ultrasmall CeO nanoparticles (<3 to 4 nm), unusual electron localization occurs on Ce 4f orbitals (Ce) as a result of O disordering, regardless of O vacancy concentration. This behavior differs from ordinary electron localization caused by the presence of O vacancies. The ultrasmall metal oxides have extraordinary distortion states, making them promising for use in nanotechnology applications. Furthermore, the proposed synthesis method can be applied to various other metal oxides and allows exploration of their properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177307 | PMC |
http://dx.doi.org/10.1021/jacs.4c05106 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Shenzhen University, Chemistry, Nanhai Ave 3688, 518060, Shenzhen, CHINA.
The high entropy alloy (HEA) possesses distinctive thermal stability and electronic characteristics, which exhibits substantial potential for diverse applications in electrocatalytic reactions. However, accurately controlling the size of HEA still remains a challenge, especially for the ultrasmall HEA nanoparticles. Herein, we firstly calculate and illustrate the size impact on the electronic structure of HEA and the adsorption energies of crucial intermediates in typical electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), CO2 electroreduction (CO2RR) and NO3- electroreduction (NO3RR).
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:
While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
Purpose: Stem cell therapy is a promising approach for treating chronic diabetic wounds. However, its effectiveness is significantly limited by the high oxidative stress environment and persistent inflammation induced by diabetes. Strategies to overcome these challenges are essential to enhance the therapeutic potential of stem cell therapy.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
Confinement of metal species in porous supports is an effective strategy to optimize hydrogenation performance ascribing to tunable nanopore environments. However, only focusing on the electronic structure modulation for metal species has limited the design of improved catalysts. Herein, spatial confinement strategy is reported for constructing ultrasmall metal clusters in nitro-bonded COF (M@TpPa-NO, M = Pd, Pt, Ru, Rh, Ir).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing University, Biomedical Engineering, 22 Hankou Rd, 210093, Nanjing, CHINA.
Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (Fe3O4 NPs) is topotactically transformed into maghemite (γ-Fe2O3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!