Methane-derived authigenic carbonate often constitutes the sole remaining record of relic methane seeps. The clumped (∆) and oxygen isotopic composition of seep carbonates often yield inaccurate temperatures, attributed to kinetic isotope effects and modification of seawater isotope composition by hydrate water. Here, we analyzed the dual-clumped isotope (∆/∆) composition of authigenic carbonate from a modern methane seep. We demonstrate that aragonite forms closest to isotopic equilibrium such that its ∆ can directly yield the correct formational temperature, whereas calcite is unambiguously biased by kinetic isotope effects. Numerical models show that the observed bias in the isotopic composition arises from rate-limiting dehydration/dehydroxylation of HCO alongside diffusive fractionation, which can be corrected for with analysis of carbonate ∆/∆ values. We demonstrate the utility of dual-clumped isotope analysis for studying seep carbonates, as it reveals the origin and magnitude of kinetic biases and can be used to reconstruct paleotemperature and seawater δO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135390PMC
http://dx.doi.org/10.1126/sciadv.adn0155DOI Listing

Publication Analysis

Top Keywords

kinetic biases
8
methane seep
8
carbonate ∆/∆
8
authigenic carbonate
8
isotopic composition
8
seep carbonates
8
kinetic isotope
8
isotope effects
8
dual-clumped isotope
8
isotope
5

Similar Publications

Pretrained Deep Neural Network Kin-SiM for Single-Molecule FRET Trace Idealization.

J Phys Chem B

January 2025

Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.

Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.

View Article and Find Full Text PDF

Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.

View Article and Find Full Text PDF

Functional characterization and protein engineering of a O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis of Stephania tetrandra.

Int J Biol Macromol

January 2025

Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:

Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.

View Article and Find Full Text PDF

As a graphene-like layered material, molybdenum disulfide (MoS), has attracted increasing attentions for its promising application in electrocatalysis. Whereas MoS still suffers from the sluggish reaction kinetics in oxygen evolution reaction (OER) due to the low density of active sites in most exposed planes. In this work, high density of active sites on MoS basal planes has been obtained by synthesizing mesoporous MoS with Co doping and sulfur vacancies (V).

View Article and Find Full Text PDF

Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB and its primary transducer, G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!