The unavoidable option for socially sustainable development is a low-carbon economy. One of the essential steps for China to attain high-quality development is reducing carbon emissions. It is necessary to realize low-carbon development in Sichuan, as it is not only an important economic zone but also an ecological protected area. The concurrent relationship among energy consumption, carbon emissions, and economic growth was examined in this study using the Tapio decoupling indicator, and the factors affecting energy consumption and carbon emissions in Sichuan were broken down using the logarithmic mean Divisia indicator (LMDI). The findings demonstrate a fundamental relative decoupling relationship between Sichuan's energy use and carbon emissions. Analysis of energy consumption and carbon emissions in Sichuan Province from 2005 to 2020 shows distinct patterns. From 2005 to 2012, in 2014, and from 2016 to 2020, the relationship between energy use and carbon emissions was relatively decoupled, with decoupling values ranging between 0 and 1. Absolute decoupling occurred in specific years: 2010, from 2013 to 2018, and in 2020. These periods are characterized by economic growth alongside reductions in carbon emissions. Factors affecting energy consumption and carbon emissions were consistently analyzed, showing similar impacts throughout the study periods. We find that population and economic growth are the main driving forces of these effects. The effects of energy intensity and industrial structure mainly play restraining roles, and the latter has a slightly weaker effect than the former.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135781PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302733PLOS

Publication Analysis

Top Keywords

carbon emissions
32
energy consumption
16
consumption carbon
16
economic growth
12
low-carbon development
8
sichuan province
8
carbon
8
emissions
8
relationship energy
8
factors energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!