Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research in neurophysiology has shown that humans are able to adapt the mechanical stiffness at the hand in order to resist disturbances. This has served as inspiration for optimising stiffness in robot arms during manipulation tasks. Endpoint stiffness is modelled in Cartesian space, as though the hand were in independent rigid body. But an arm is a series of rigid bodies connected by articulated joints. The contribution of the joints and arm configuration to the endpoint stiffness has not yet been quantified. In this paper we use mathematical optimisation to find conditions for maximum stiffness and compliance with respect to an externally applied force. By doing so, we can retroactively explain observations made about humans using these mathematically optimal conditions. We then show how this optimisation can be applied to robotic task planning and control. Experiments on a humanoid robot show similar arm posture to that observed in humans. This suggests there is an underlying physical principle by which humans optimise stiffness. We can use this to derive natural control methods for robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135727 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302987 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!