A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling Chromatography Binding through Molecular Dynamics Simulations with Resin Fragments. | LitMetric

Modeling Chromatography Binding through Molecular Dynamics Simulations with Resin Fragments.

J Phys Chem B

In Silico Discovery, Janssen Research & Development, LLC, a Johnson & Johnson company, Spring House, Pennsylvania 19002, United States.

Published: June 2024

Accurate atomistic modeling of the interactions of a chromatography resin with a solute can inform the selection of purification conditions for a product, an important problem in the biotech and pharmaceutical industries. We present a molecular dynamics simulation-based approach for the qualitative prediction of interaction sites (specificity) and retention times (affinity) of a protein for a given chromatography resin. We mimicked the resin with an unrestrained ligand composed of the resin headgroup coupled with successively larger fragments of the agarose backbone. The interactions of the ligand with the protein are simulated in an explicit solvent using the Replica Exchange Molecular Dynamics enhanced sampling approach in conjunction with Hydrogen Mass Repartitioning (REMD-HMR). We computed the ligand interaction surface from the simulation trajectories and correlated the features of the interaction surface with experimentally determined retention times. The simulation and analysis protocol were first applied to a series of ubiquitin mutants for which retention times on Capto MMC resin are available. The ubiquitin simulations helped identify the optimal ligand that was used in subsequent simulations on six proteins for which Capto MMC elution times are available. For each of the six proteins, we computed the interaction surface and characterized it in terms of a range of simulation-averaged residue-level physicochemical descriptors. Modeling of the salt concentrations required for elution with respect to the descriptors resulted in a linear fit in terms of aromaphilicity and Kyte-Doolittle hydrophobicity that was robust to outliers, showed high correlation, and correctly ranked the protein elution order. The physics-based model building approach described here does not require a large experimental data set and can be readily applied to different resins and diverse biomolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181327PMC
http://dx.doi.org/10.1021/acs.jpcb.4c00578DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
retention times
12
interaction surface
12
chromatography resin
8
capto mmc
8
resin
6
modeling chromatography
4
chromatography binding
4
binding molecular
4
dynamics simulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!