Neutrophils release extracellular vesicles, and some subsets of neutrophil-derived extracellular vesicles are procoagulant. In response to Staphylococcus aureus, neutrophils produce extracellular vesicles that associate electrostatically with neutrophil extracellular traps. DNA in neutrophil extracellular traps is procoagulant, but whether neutrophil extracellular vesicles produced during bacterial challenge have similar activity is unknown. Given that extracellular vesicle activity is agonist and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived extracellular vesicles, as well as extracellular vesicle-associated DNA, and intact extracellular vesicles and DNA cause coagulation. We recovered extracellular vesicles from neutrophils challenged with S. aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa and measured associated DNA and procoagulant activity. Extracellular vesicles from S. aureus-challenged neutrophils, which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation in platelet-poor plasma. Extracellular vesicle lysis and DNase treatment reduced thrombin generation by 90% and 37%, respectively. S. epidermidis, E. coli, and P. aeruginosa also increased extracellular vesicle production and extracellular vesicle-associated extracellular DNA, and these extracellular vesicles were also procoagulant. Compared to spontaneously released extracellular vesicles, which demonstrated some ability to amplify factor XII-dependent coagulation in the presence of an activator, only extracellular vesicles produced in response to bacteria could initiate the pathway. S. aureus and S. epidermidis extracellular vesicles had more surface-associated DNA than E. coli and P. aeruginosa extracellular vesicles, and S. aureus and S. epidermidis extracellular vesicles contributed to initiation and amplification of thrombin generation in a DNA-dependent manner. However, DNA on E. coli or P. aeruginosa extracellular vesicles played no role, suggesting that neutrophils release procoagulant extracellular vesicles, which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599124PMC
http://dx.doi.org/10.1093/jleuko/qiae125DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
68
extracellular
25
vesicles
17
thrombin generation
16
neutrophils release
12
neutrophil extracellular
12
extracellular vesicle
12
coli aeruginosa
12
response bacteria
8
release extracellular
8

Similar Publications

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease.

Dev Cell

December 2024

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China. Electronic address:

The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown.

View Article and Find Full Text PDF

MiRNAs and extracellular vesicles in psychiatry: Potential biomarkers, therapeutic advances, and animal models.

Eur Neuropsychopharmacol

January 2025

Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain; Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!