A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Edge of Stability Echo State Network. | LitMetric

Edge of Stability Echo State Network.

IEEE Trans Neural Netw Learn Syst

Published: May 2024

Echo state networks (ESNs) are time series processing models working under the echo state property (ESP) principle. The ESP is a notion of stability that imposes an asymptotic fading of the memory of the input. On the other hand, the resulting inherent architectural bias of ESNs may lead to an excessive loss of information, which in turn harms the performance in certain tasks with long short-term memory requirements. To bring together the fading memory property and the ability to retain as much memory as possible, in this article, we introduce a new ESN architecture called the Edge of Stability ESN (). The introduced model is based on defining the reservoir layer as a convex combination of a nonlinear reservoir (as in the standard ESN), and a linear reservoir that implements an orthogonal transformation. In virtue of a thorough mathematical analysis, we prove that the whole eigenspectrum of the Jacobian of the map can be contained in an annular neighborhood of a complex circle of controllable radius. This property is exploited to tune the 's dynamics close to the edge-of-chaos regime by design. Remarkably, our experimental analysis shows that model can reach the theoretical maximum short-term memory capacity (MC). At the same time, in comparison to conventional reservoir approaches, is shown to offer an excellent trade-off between memory and nonlinearity, as well as a significant improvement of performance in autoregressive nonlinear modeling and real-world time series modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3400045DOI Listing

Publication Analysis

Top Keywords

echo state
12
edge stability
8
time series
8
fading memory
8
short-term memory
8
memory
6
stability echo
4
state network
4
network echo
4
state networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!