Recent advancements in deep learning techniques have pushed forward the frontiers of real photograph denoising. However, due to the inherent pooling operations in the spatial domain, current CNN-based denoisers are biased towards focusing on low-frequency representations, while discarding the high-frequency components. This will induce a problem for suboptimal visual quality as the image denoising tasks target completely eliminating the complex noises and recovering all fine-scale and salient information. In this work, we tackle this challenge from the frequency perspective and present a new solution pipeline, coined as frequency attention denoising network (FADNet). Our key idea is to build a learning-based frequency attention framework, where the feature correlations on a broader frequency spectrum can be fully characterized, thus enhancing the representational power of the network across multiple frequency channels. Based on this, we design a cascade of adaptive instance residual modules (AIRMs). In each AIRM, we first transform the spatial-domain features into the frequency space. Then, a learning-based frequency attention framework is devised to explore the feature inter-dependencies converted in the frequency domain. Besides this, we introduce an adaptive layer by leveraging the guidance of the estimated noise map and intermediate features to meet the challenges of model generalization in the noise discrepancy. The effectiveness of our method is demonstrated on several real camera benchmark datasets, with superior denoising performance, generalization capability, and efficiency versus the state-of-the-art.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3404253DOI Listing

Publication Analysis

Top Keywords

frequency attention
12
frequency
9
frequency domain
8
real photograph
8
photograph denoising
8
learning-based frequency
8
attention framework
8
denoising
5
learning attention
4
attention frequency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!