Revealing Metabolic Dysregulation Induced by Polypropylene Nano- and Microplastics in Nile Tilapia via Noninvasive Probing Epidermal Mucus.

Anal Chem

Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China.

Published: June 2024

A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c00351DOI Listing

Publication Analysis

Top Keywords

nile tilapia
12
metabolic dysregulation
8
dysregulation induced
8
induced polypropylene
8
polypropylene nano-
8
nano- microplastics
8
epidermal mucus
8
mass spectrometry
8
revealing metabolic
4
microplastics nile
4

Similar Publications

The current investigation assessed the beneficial impacts of dietary sodium chloride (NaCl) on the growth performance, oxidant/antioxidant, and immune responses of Nile tilapia (Oreochromis niloticus) and its adaptability to different salinity levels. After acclimating the fish to the laboratory conditions for 2 weeks, the acclimated fish (10.5 ± 0.

View Article and Find Full Text PDF

Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare).

View Article and Find Full Text PDF

The pace of research efforts has been extraordinarily accelerated across the globe to address the contamination issues caused by pesticides, and fertilizers, especially in the aquatic ecosystem. The sole aim of this study was to assess the effect of urea on Nile Tilapia (Oreochromis niloticus). For this purpose, the fish fingerlings were exposed to increasing concentrations of urea such as 0, 1, 2.

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

Zinc-L-Selenomethionine Improves Growth and Hemato-Biochemical Parameters at Low but not at High Stocking Density for Nile Tilapia Males.

Biol Trace Elem Res

January 2025

Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Ondina, Salvador, 40170-110, BA, Brazil.

The study aimed to examine the interaction between diets supplemented with zinc-L-selenomethionine (ZnSeMet) and two stocking densities (SD) on Nile tilapia (Oreochromis niloticus) males. Four extruded diets were formulated: 0.0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!